README.md 2.51 KB
Newer Older
1
2
# AMLD 2021 Workshop

Oksana Riba Grognuz's avatar
Oksana Riba Grognuz committed
3
Practical part for AMLD 2021 Workshop based on the original work of Pawel Rosikiewicz available at [Github](https://github.com/PawelRosikiewicz/SkinDiagnosticAI).
Oksana Riba Grognuz's avatar
Oksana Riba Grognuz committed
4
5
6
7
8
9
10
  
![skindiagnosticai title image](images/skindiagnosticai_title_image.png)

## SkinDiagnosticAI  
### Comparison of 5000 AI methods for cancer detection and classyfication on dermatoscopic images from Harvard HAM10000 dataset using FastClassAI workbench

Author: Pawel Rosikiewicz, Founder, and Team Leader at SwissAI  
pawel rosikiewicz's avatar
pawel rosikiewicz committed
11

Oksana Riba Grognuz's avatar
Oksana Riba Grognuz committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
The goal is to quickly test and optimize large number of ml and deep learning models and dataset preprocessing procedures, that are integrated in one python enviroment with FastClassAI workebench.
  
Main Goals are:
- to identify main challenges with the dataset used for model training,
- to explore different strategies for data preparation, treatment and feature extraction,
- to test, of the shelf AI solutions, with extensive grid search,
- to develope baseline for further analyses,
- to evaluate what statistics and error fucntions shodul be used for developing final and ensemble models,
  
### Presentation on SkinDiagnosticAI Project
* all images were created wiht FastClassAI pipeline,
* the slides shows full analyis done on over 5000 compared models and data treatment procedures,
* Jupyter notebooks in notebook/ folder shows light vervion of that analyis that can be reapeated by the user and build up to any number of compared models,

![skindiagnosticai presentation slide](images/Slide1.png)
![skindiagnosticai presentation slide](images/Slide2.png)
![skindiagnosticai presentation slide](images/Slide3.png)
![skindiagnosticai presentation slide](images/Slide4.png)
![skindiagnosticai presentation slide](images/Slide5.png)
![skindiagnosticai presentation slide](images/Slide6.png)
![skindiagnosticai presentation slide](images/Slide7.png)
![skindiagnosticai presentation slide](images/Slide8.png)
![skindiagnosticai presentation slide](images/Slide9.png)
![skindiagnosticai presentation slide](images/Slide10.png)
![skindiagnosticai presentation slide](images/Slide11.png)
![skindiagnosticai presentation slide](images/Slide12.png)
![skindiagnosticai presentation slide](images/Slide13.png)
![skindiagnosticai presentation slide](images/Slide14.png)
![skindiagnosticai presentation slide](images/Slide15.png)
![skindiagnosticai presentation slide](images/Slide16.png)
![skindiagnosticai presentation slide](images/Slide17.png)
![skindiagnosticai presentation slide](images/Slide18.png)
![skindiagnosticai presentation slide](images/Slide19.png