simpler_model.ipynb 2.34 MB
Newer Older
1
2
3
4
{
 "cells": [
  {
   "cell_type": "markdown",
5
   "id": "generic-navigation",
6
7
8
9
10
11
12
   "metadata": {},
   "source": [
    "# **Location of the stress factor in potential evapo-transpiration models**"
   ]
  },
  {
   "cell_type": "markdown",
13
   "id": "adjacent-solid",
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "# Part I - Methodology \n",
    "\n",
    "## <u> Motivation </u> \n",
    "\n",
    "### Theoretical background\n",
    "\n",
    "In the literature, this scaling of the potential evapo-transpiration is commonly found with simpler radiation-temperature models such as the Priestley and Taylor model instead of the Penman-Monteith one. Recall the expression of the Priestley and Taylor model: \n",
    "\n",
    "\\begin{equation}\\label{eq_PT}\n",
    "    \\lambda E_{p,PT} = \\alpha \\frac{\\Delta}{\\Delta + \\gamma}(Rn - G)\n",
    "\\end{equation}\n",
    "\n",
    "The Priestley and Taylor is not physicaly based as can be the Penman-Monteith model. Then we aim at investigating the differences obtained when using such a model. \n",
    "\n",
    "This notebook compares different newly implemented models : \n",
    "* Priestley and Taylor model with a stress factor : \n",
    "\\begin{align}\n",
    "    E_{a, PT}  = f_{PAR}.S(\\theta).E_{p,PT}(\\textbf{X})\n",
    "\\end{align}\n",
    "\n",
    "* Modified varying surface conductance Penman-Monteith model :\n",
    "\\begin{align}\n",
    "    E_{a, var, PM}  = f_{PAR}.E_{p,PM mod}(\\textbf{X}, S(\\theta))\n",
    "\\end{align}\n",
    "\n",
    "* Modified constant surface conductance Penman-Monteith model :\n",
    "\\begin{align}\n",
    "    E_{a, cst, PM}  = f_{PAR}.S(\\theta).E_{p,PM mod}(\\textbf{X})\n",
    "\\end{align}\n",
    "\n",
    "The modified version of the Penman-Monteith equation takes into account the double sided exchange of sensible heat. This model was developped at the leaf scale but is tested here at the canopy scale in the framework of the big leaf model (*Schymanski and Or, 2017*). The analytical expression of the modified expression is henceforth: \n",
    "\\begin{equation}\n",
    "E = \\frac{1}{\\lambda}\\frac{\\Delta (R_n - G) + c_p \\rho_a g_a a_{sh} VPD }{\\Delta + \\gamma \\left( 1+ \\frac{g_a}{g_s} \\right) \\frac{a_{sh}}{a_s}}\n",
    "\\end{equation}\n",
    "\n",
    "### Modelling experiements\n",
    "\n",
    "Different experiments are carried out to compare the different models and assess their behavior: \n",
58
    "1. All models are calibrated for a single year and their ability to reproduce an observed time serie is assessed\n",
59
60
61
62
63
64
    "2. Their prediction capability is evaluated by randomly taking one or several years of data from the Howard Springs dataset, calibrating the model for this specific year and predicting the evapo-transpiration time serie for the other years. \n",
    "3. The same procedure is repeated across different sites in Australia"
   ]
  },
  {
   "cell_type": "markdown",
65
   "id": "rotary-preparation",
66
67
68
69
70
71
72
   "metadata": {},
   "source": [
    "# Part II - Functions set up"
   ]
  },
  {
   "cell_type": "markdown",
73
   "id": "golden-aircraft",
74
75
76
77
78
79
80
81
   "metadata": {},
   "source": [
    "## Importing relevant packages"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
82
   "id": "spread-volleyball",
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "WARNING (aesara.link.c.cmodule): install mkl with `conda install mkl-service`: No module named 'mkl'\n",
      "WARNING (aesara.tensor.blas): Using NumPy C-API based implementation for BLAS functions.\n"
     ]
    }
   ],
   "source": [
    "# data manipulation and plotting\n",
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt\n",
98
    "from matplotlib.patches import Polygon\n",
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    "from matplotlib._layoutgrid import plot_children\n",
    "from collections import OrderedDict\n",
    "from IPython.display import display\n",
    "import os # to look into the other folders of the project\n",
    "import importlib.util # to open the .py files written somewhere else\n",
    "#sns.set_theme(style=\"whitegrid\")\n",
    "\n",
    "# Sympy and sympbolic mathematics\n",
    "from sympy import (asin, cos, diff, Eq, exp, init_printing, log, pi, sin, \n",
    "                   solve, sqrt, Symbol, symbols, tan, Abs)\n",
    "from sympy.physics.units import convert_to\n",
    "init_printing() \n",
    "from sympy.printing import StrPrinter\n",
    "from sympy import Piecewise\n",
    "StrPrinter._print_Quantity = lambda self, expr: str(expr.abbrev)    # displays short units (m instead of meter)\n",
    "from sympy.printing.aesaracode import aesara_function\n",
    "from sympy.physics.units import *    # Import all units and dimensions from sympy\n",
    "from sympy.physics.units.systems.si import dimsys_SI, SI\n",
    "\n",
    "# for ESSM, environmental science for symbolic math, see https://github.com/environmentalscience/essm\n",
    "from essm.variables._core import BaseVariable, Variable\n",
    "from essm.equations import Equation\n",
    "from essm.variables.units import derive_unit, SI, Quantity\n",
    "from essm.variables.utils import (extract_variables, generate_metadata_table, markdown, \n",
    "                                  replace_defaults, replace_variables, subs_eq)\n",
    "from essm.variables.units import (SI_BASE_DIMENSIONS, SI_EXTENDED_DIMENSIONS, SI_EXTENDED_UNITS,\n",
    "                                  derive_unit, derive_baseunit, derive_base_dimension)\n",
    "\n",
    "# For netCDF\n",
    "import netCDF4\n",
    "import numpy as np\n",
    "import xarray as xr\n",
    "import warnings\n",
    "from netCDF4 import Dataset\n",
    "\n",
    "# For regressions\n",
    "from sklearn.linear_model import LinearRegression\n",
    "\n",
    "# Deactivate unncessary warning messages related to a bug in Numpy\n",
    "warnings.simplefilter(action='ignore', category=FutureWarning)\n",
    "\n",
    "# for calibration\n",
    "from scipy import optimize\n",
    "\n",
    "from random import random"
   ]
  },
  {
   "cell_type": "markdown",
148
   "id": "enormous-cleanup",
149
150
151
152
153
154
155
156
   "metadata": {},
   "source": [
    "## Path of the different files (pre-defined python functions, sympy equations, sympy variables)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
157
   "id": "arctic-fraction",
158
159
160
161
162
163
164
165
166
167
168
169
170
   "metadata": {
    "tags": [
     "parameters"
    ]
   },
   "outputs": [],
   "source": [
    "path_variable = '../../theory/pyFile_storage/theory_variable.py'\n",
    "path_equation = '../../theory/pyFile_storage/theory_equation.py' \n",
    "path_analysis_functions = '../../theory/pyFile_storage/analysis_functions.py'\n",
    "path_data = '../../../data/eddycovdata/'\n",
    "dates_fPAR = '../../../data/fpar_howard_spring/dates_v5'\n",
    "\n",
171
172
173
174
    "tex_file_whole = \"latex_files/whole_year.tex\"\n",
    "tex_file_dry = \"latex_files/dry_season.tex\"\n",
    "tex_file_wet = \"latex_files/wet_season.tex\"\n",
    "\n",
175
176
177
178
179
180
181
182
183
184
185
186
187
    "timeSerie_oneSite_oneYear = 'timeSerie_oneSite_oneYear.png'\n",
    "inverseModelling = \"inverseModelling.png\"\n",
    "Influence_atmo_E_dry = \"Influence_atmo_E_dry.png\"\n",
    "Influence_atmo_E_wet = \"Influence_atmo_E_wet.png\"\n",
    "Influence_atmo_rel_dry = \"Influence_atmo_rel_dry.png\"\n",
    "Influence_atmo_rel_wet = \"Influence_atmo_rel_wet.png\"\n",
    "sensitivity_parameters = \"sensitivity_parameters.png\"\n",
    "statistical_assessment = \"statistical_assessment.png\"\n",
    "different_sites = \"different_sites.png\""
   ]
  },
  {
   "cell_type": "markdown",
188
   "id": "dying-notion",
189
190
191
192
193
194
195
196
   "metadata": {},
   "source": [
    "## Importing the sympy variables and equations defined in the theory.ipynb notebook"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
197
   "id": "adverse-campus",
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "theta_sat\n",
      "theta_res\n",
      "alpha\n",
      "n\n",
      "m\n",
      "S_mvg\n",
      "theta\n",
      "h\n",
      "S\n",
      "theta_4\n",
      "theta_3\n",
      "theta_2\n",
      "theta_1\n",
      "L\n",
      "Mw\n",
      "Pv\n",
      "Pvs\n",
      "R\n",
      "T\n",
      "c1\n",
      "T0\n",
      "Delta\n",
      "E\n",
      "G\n",
      "H\n",
      "Rn\n",
      "LE\n",
      "gamma\n",
      "alpha_PT\n",
      "c_p\n",
      "w\n",
      "kappa\n",
      "z\n",
      "u_star\n",
      "VH\n",
      "d\n",
      "z_om\n",
      "z_oh\n",
      "r_a\n",
      "g_a\n",
      "r_s\n",
      "g_s\n",
      "c1_e\n",
      "c2_e\n",
      "e\n",
      "T_min\n",
      "T_max\n",
      "RH_max\n",
      "RH_min\n",
      "e_a\n",
      "e_s\n",
      "iv_T\n",
      "T_kv\n",
      "P\n",
      "rho_a\n",
      "VPD\n",
      "eq_m_n\n",
      "eq_MVG_neg_case\n",
      "eq_MVG\n",
      "eq_sat_degree\n",
      "eq_MVG_h\n",
      "eq_h_FC\n",
      "eq_theta_4_3\n",
      "eq_theta_2_1\n",
      "eq_water_stress_simple\n",
      "eq_Pvs_T\n",
      "eq_Delta\n",
      "eq_PT\n",
      "eq_PM\n",
      "eq_PM_VPD\n",
      "eq_PM_g\n",
      "eq_PM_inv\n"
     ]
    }
   ],
   "source": [
    "for code in [path_variable,path_equation]:\n",
    "    name_code = code[-20:-3]\n",
    "    spec = importlib.util.spec_from_file_location(name_code, code)\n",
    "    mod = importlib.util.module_from_spec(spec)\n",
    "    spec.loader.exec_module(mod)\n",
    "    names = getattr(mod, '__all__', [n for n in dir(mod) if not n.startswith('_')])\n",
    "    glob = globals()\n",
    "    for name in names:\n",
    "        print(name)\n",
    "        glob[name] = getattr(mod, name)"
   ]
  },
  {
   "cell_type": "markdown",
294
   "id": "editorial-looking",
295
296
297
298
299
300
301
302
   "metadata": {},
   "source": [
    "## Importing the performance assessment functions defined in the analysis_function.py file"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
303
   "id": "attended-broad",
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "AIC\n",
      "AME\n",
      "BIC\n",
      "CD\n",
      "CP\n",
      "IoA\n",
      "KGE\n",
      "MAE\n",
      "MARE\n",
      "ME\n",
      "MRE\n",
      "MSRE\n",
      "MdAPE\n",
      "NR4MS4E\n",
      "NRMSE\n",
      "NS\n",
      "NSC\n",
      "PDIFF\n",
      "PEP\n",
      "R4MS4E\n",
      "RAE\n",
      "RMSE\n",
      "RVE\n",
      "np\n",
      "nt\n"
     ]
    }
   ],
   "source": [
    "for code in [path_analysis_functions]:\n",
    "    name_code = code[-20:-3]\n",
    "    spec = importlib.util.spec_from_file_location(name_code, code)\n",
    "    mod = importlib.util.module_from_spec(spec)\n",
    "    spec.loader.exec_module(mod)\n",
    "    names = getattr(mod, '__all__', [n for n in dir(mod) if not n.startswith('_')])\n",
    "    glob = globals()\n",
    "    for name in names:\n",
    "        print(name)\n",
    "        glob[name] = getattr(mod, name)"
   ]
  },
  {
   "cell_type": "markdown",
353
   "id": "photographic-desktop",
354
355
356
357
358
359
360
   "metadata": {},
   "source": [
    "## Data import, preprocess and shape for the computations"
   ]
  },
  {
   "cell_type": "markdown",
361
   "id": "successful-portugal",
362
363
364
365
366
367
368
369
370
371
   "metadata": {},
   "source": [
    "### Get the different files where data are stored\n",
    "\n",
    "Eddy-covariance data from the OzFlux network are stored in **.nc** files (NetCDF4 files) which is roughly a panda data frame with meta-data (see https://www.unidata.ucar.edu/software/netcdf/ for more details about NetCDF4 file format). fPAR data are stored in **.txt** files"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
372
   "id": "trying-answer",
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['../../../data/eddycovdata/fpar_adelaide_v5.txt', '../../../data/eddycovdata/fpar_daly_v5.txt', '../../../data/eddycovdata/fpar_dry_v5.txt', '../../../data/eddycovdata/fpar_howard_v5.txt', '../../../data/eddycovdata/fpar_sturt_v5.txt']\n",
      "['../../../data/eddycovdata/AdelaideRiver_L4.nc', '../../../data/eddycovdata/DalyUncleared_L4.nc', '../../../data/eddycovdata/DryRiver_L4.nc', '../../../data/eddycovdata/HowardSprings_L4.nc', '../../../data/eddycovdata/SturtPlains_L4.nc']\n"
     ]
    }
   ],
   "source": [
    "fPAR_files = []\n",
    "eddy_files = []\n",
    "\n",
    "for file in os.listdir(path_data):\n",
    "    if file.endswith(\".txt\"):\n",
    "        fPAR_files.append(os.path.join(path_data, file))\n",
    "    elif file.endswith(\".nc\"):\n",
    "        eddy_files.append(os.path.join(path_data, file))\n",
    "        \n",
    "fPAR_files.sort()\n",
    "print(fPAR_files)\n",
    "eddy_files.sort()\n",
    "print(eddy_files)"
   ]
  },
  {
   "cell_type": "markdown",
402
   "id": "fundamental-collection",
403
404
405
406
407
408
409
410
411
   "metadata": {},
   "source": [
    "### Define and test a function that process the fPAR data\n",
    "In the **.txt** files, only one value per month is given for the fPAR. The following function takes one .txt file containing data about the fPAR coefficients, and the related dates, stored in the a seperate file. The fPAR data (date and coefficients) are cleaned (good string formatting), mapped together and averaged to output one value per month (the fPAR measurement period doesn't spans the measurement period of the eddy covariance data)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
412
   "id": "union-cheese",
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
   "metadata": {},
   "outputs": [],
   "source": [
    "def fPAR_data_process(fPAR_file,dates_fPAR):\n",
    "    \n",
    "    fparv5_dates = np.genfromtxt(dates_fPAR, dtype='str', delimiter=',')\n",
    "    fparv5_dates = pd.to_datetime(fparv5_dates[:,1], format=\"%Y%m\")\n",
    "    dates_pd = pd.date_range(fparv5_dates[0], fparv5_dates[-1], freq='MS')\n",
    "\n",
    "    fparv5_howard = np.loadtxt(fPAR_file,delimiter=',', usecols=3 )\n",
    "    fparv5_howard[fparv5_howard == -999] = np.nan\n",
    "    fparv5_howard_pd = pd.Series(fparv5_howard, index = fparv5_dates)\n",
    "    fparv5_howard_pd = fparv5_howard_pd.resample('MS').max()\n",
    "\n",
    "    # convert fparv5_howard_pd to dataframe\n",
    "    fPAR_pd = pd.DataFrame(fparv5_howard_pd)\n",
    "    fPAR_pd = fPAR_pd.rename(columns={0:\"fPAR\"})\n",
    "    fPAR_pd.index = fPAR_pd.index.rename(\"time\")\n",
    "\n",
    "    # convert fPAR_pd to xarray to aggregate the data\n",
    "    fPAR_xr = fPAR_pd.to_xarray()\n",
    "    fPAR_agg = fPAR_xr.fPAR.groupby('time.month').max()\n",
    "\n",
    "    # convert back to dataframe\n",
    "    fPAR_pd = fPAR_agg.to_dataframe()\n",
    "    Month = np.arange(1,13)\n",
    "    Month_df = pd.DataFrame(Month)\n",
    "    Month_df.index = fPAR_pd.index\n",
    "    Month_df = Month_df.rename(columns={0:\"Month\"})\n",
    "\n",
    "    fPAR_mon = pd.concat([fPAR_pd,Month_df], axis = 1)\n",
    "    \n",
    "    return(fPAR_mon)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
451
   "id": "hired-gather",
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>fPAR</th>\n",
       "      <th>Month</th>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>month</th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>0.78</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>0.84</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>0.79</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>0.84</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>0.71</td>\n",
       "      <td>5</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>0.75</td>\n",
       "      <td>6</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>0.60</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>0.54</td>\n",
       "      <td>8</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>0.52</td>\n",
       "      <td>9</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>0.67</td>\n",
       "      <td>10</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>0.73</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>12</th>\n",
       "      <td>0.78</td>\n",
       "      <td>12</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "       fPAR  Month\n",
       "month             \n",
       "1      0.78      1\n",
       "2      0.84      2\n",
       "3      0.79      3\n",
       "4      0.84      4\n",
       "5      0.71      5\n",
       "6      0.75      6\n",
       "7      0.60      7\n",
       "8      0.54      8\n",
       "9      0.52      9\n",
       "10     0.67     10\n",
       "11     0.73     11\n",
       "12     0.78     12"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "fPAR_data_process(fPAR_files[3],dates_fPAR)"
   ]
  },
  {
   "cell_type": "markdown",
577
   "id": "perfect-copper",
578
579
580
581
582
583
584
585
586
   "metadata": {},
   "source": [
    "### fPARSet function\n",
    "Map the fPAR time serie to the given eddy-covariance data. Takes two dataframes as input (one containing the fPAR data, the other containing the eddy-covariance data) and returns a data frame where the fPAR monthly values have been scaled to the time scale of the eddy covariance data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
587
   "id": "worse-agency",
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
   "metadata": {},
   "outputs": [],
   "source": [
    "def fPARSet(df_add, fPAR_pd):\n",
    "    \n",
    "    # construct the time serie of the fPAR coefficients\n",
    "    dummy_len = df_add[\"Fe\"].size\n",
    "    fPAR_val = np.zeros((dummy_len,))\n",
    "    \n",
    "    dummy_pd = df_add\n",
    "    dummy_pd.reset_index(inplace=True)\n",
    "    dummy_pd.index=dummy_pd.time\n",
    "    \n",
    "    month_pd = dummy_pd['time'].dt.month\n",
    "    \n",
    "    for i in range(dummy_len):\n",
    "        current_month = month_pd.iloc[i]\n",
    "        line_fPAR = fPAR_pd[fPAR_pd['Month'] == current_month]\n",
    "        fPAR_val[i] = line_fPAR['fPAR']\n",
    "    \n",
    "    # transform fPAR_val into dataframe to concatenate to df:\n",
    "    fPAR = pd.DataFrame(fPAR_val, index = df_add.index)\n",
    "    df_add = pd.concat([df_add,fPAR], axis = 1)\n",
    "    df_add = df_add.rename(columns = {0:\"fPAR\"})\n",
    "    \n",
    "    return(df_add)"
   ]
  },
  {
   "cell_type": "markdown",
618
   "id": "interstate-noise",
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
   "metadata": {},
   "source": [
    "### DataChose function\n",
    "\n",
    "Function taking the raw netcdf4 data file from the eddy covariance measurement and shape it such that it can be used for the computations. Only relevant variables are kept (latent heat flux, net radiation, ground heat flux, soil water content, wind speed, air temperature, VPD, bed shear stress). The desired data period is selected and is reshaped at the desired time scale (daily by default). Uses the fPARSet function defined above\n",
    "\n",
    "List of variable abbreviation : \n",
    "* `Rn` : Net radiation flux\n",
    "* `G` : Ground heat flux \n",
    "* `Sws` : soil moisture\n",
    "* `Ta` : Air temperature\n",
    "* `RH` : Relative humidity\n",
    "* `W` : Wind speed\n",
    "* `E` : measured evaporation\n",
    "* `VPD` : Vapour pressure deficit"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
639
   "id": "parallel-hygiene",
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
   "metadata": {},
   "outputs": [],
   "source": [
    "def DataChose(ds_ref, period_sel, fPAR_given, Freq = \"D\", sel_period_flag = True):\n",
    "    \"\"\"Take subset of dataset if Flag == True, entire dataset else\n",
    "    \n",
    "    ds_ref: xarray object to be considered as the ref for selecting attributes\n",
    "    agg_flag: aggregate the data at daily time scale if true\n",
    "    Flag: select specific period if true (by default)\n",
    "    period: time period to be selected\n",
    "    ----------\n",
    "    Method : \n",
    "    - transform the xarray in panda dataframe for faster iteration\n",
    "    - keep only the necessary columns : Fe, Fn, Fg, Ws, Sws, Ta, ustar, RH\n",
    "    - transform / create new variables : Temperature in °C, T_min/T_max, RH_min/RH_max\n",
    "    - create the Data vector (numpy arrays)\n",
    "    - create back a xarray \n",
    "    - return an xarray\n",
    "    ----------\n",
    "    \n",
    "    Returns an xarray and a Data vector\n",
    "    \"\"\"\n",
    "    \n",
    "    if sel_period_flag:\n",
    "        df = ds_ref.sel(time = period_sel) \n",
    "        # nameXarray_output = period + \"_\" + nameXarray_output\n",
    "    else : \n",
    "        df = ds_ref\n",
    "        \n",
    "    # keep only the columns of interest\n",
Oscar Corvi's avatar
Oscar Corvi committed
670
    "    df = df[[\"Fe\",\"Fn\",\"Fg\",\"Ws\",\"Sws\",\"Ta\",\"ustar\",\"RH\", \"VPD\",\"ps\"]]\n",
671
672
673
674
675
    "    \n",
    "    # convert to dataframe\n",
    "    df = df.to_dataframe()\n",
    "    \n",
    "    # aggregate following the rule stated in freq\n",
Oscar Corvi's avatar
Oscar Corvi committed
676
677
678
679
680
681
682
683
    "    pd_Tmin = df.Ta.groupby([pd.Grouper(level = \"latitude\"), pd.Grouper(level = \"longitude\"), pd.Grouper(level = \"time\", freq = Freq)]).min()\n",
    "               \n",
    "    pd_Tmax = df.Ta.groupby([pd.Grouper(level = \"latitude\"), pd.Grouper(level = \"longitude\"), pd.Grouper(level = \"time\", freq = Freq)]).max()\n",
    "    \n",
    "    pd_RHmin = df.RH.groupby([pd.Grouper(level = \"latitude\"), pd.Grouper(level = \"longitude\"), pd.Grouper(level = \"time\", freq = Freq)]).min()\n",
    "    \n",
    "    pd_RHmax = df.RH.groupby([pd.Grouper(level = \"latitude\"), pd.Grouper(level = \"longitude\"), pd.Grouper(level = \"time\", freq = Freq)]).max()\n",
    "    \n",
684
    "    df = df.groupby([pd.Grouper(level = \"latitude\"), pd.Grouper(level = \"longitude\"), pd.Grouper(level = \"time\", freq = Freq)]).mean()\n",
Oscar Corvi's avatar
Oscar Corvi committed
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
    "    df = pd.DataFrame(df)\n",
    "    \n",
    "    pd_Tmin = pd.DataFrame(pd_Tmin, index = df.index)\n",
    "    pd_Tmin = pd_Tmin.rename(columns = {\"Ta\":\"Ta_min\"})\n",
    "    \n",
    "    pd_Tmax = pd.DataFrame(pd_Tmax, index = df.index)\n",
    "    pd_Tmax = pd_Tmax.rename(columns = {\"Ta\":\"Ta_max\"})\n",
    "    \n",
    "    pd_RHmin = pd.DataFrame(pd_RHmin, index = df.index)\n",
    "    pd_RHmin = pd_RHmin.rename(columns = {\"RH\":\"RH_min\"})\n",
    "    \n",
    "    pd_RHmax = pd.DataFrame(pd_RHmax, index = df.index)\n",
    "    pd_RHmax = pd_RHmax.rename(columns = {\"RH\":\"RH_max\"})\n",
    "    \n",
    "    df = pd.concat([df,pd_Tmin,pd_Tmax,pd_RHmin,pd_RHmax],axis = 1)\n",
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
    "    \n",
    "    # convert data to the good units : \n",
    "    df[\"Fe\"] = df[\"Fe\"]/2.45e6 # divide by latent heat of vaporization\n",
    "    df[\"Ta\"] = df[\"Ta\"]+273 # convert to kelvin\n",
    "    df[\"VPD\"] = df[\"VPD\"]*1000 # convert from kPa to Pa\n",
    "    \n",
    "    # construct the time serie of the fPAR coefficients\n",
    "    df = fPARSet(df,fPAR_given)\n",
    "    \n",
    "    # initialise array for the error\n",
    "    Error_obs = np.zeros((df.Fe.size,))\n",
    "    \n",
    "    for i in range(df.Fe.size):\n",
    "        size_window_left, size_window_right = min(i,7),min(df.Fe.size - i-1, 7)\n",
    "        #print(size_window_left, size_window_right)\n",
    "        sub_set = df.Fe[i-size_window_left : i+size_window_right].to_numpy()\n",
    "        mean_set = np.mean(sub_set)\n",
    "        sdt_set = np.std(sub_set)\n",
    "        error_obs = 2*sdt_set\n",
    "        Error_obs[i] = error_obs\n",
    "    \n",
    "    ErrorObs = pd.DataFrame(Error_obs, index = df.index)\n",
    "    \n",
    "    df = pd.concat([df,ErrorObs], axis = 1)\n",
    "    df = df.rename(columns = {0:\"error\"})\n",
    "\n",
    "        \n",
    "    return(df)"
   ]
  },
  {
   "cell_type": "markdown",
732
   "id": "distant-payday",
733
734
735
736
737
738
739
740
   "metadata": {},
   "source": [
    "## Compile the different functions defined in the symbolic domain\n",
    "All functions defined with sympy and ESSM are defined in the symbolic domain. In order to be efficiently evaluated, they need to be vectorized to allow computations with numpu arrays. We use the *aesara* printing compiler from the sympy package. Note that this printer replace the older one (*theano*) which is deprecated. A comparison of the performances between the two packages can be found in the aesara repository."
   ]
  },
  {
   "cell_type": "markdown",
741
   "id": "loose-benefit",
742
743
744
745
746
747
748
749
   "metadata": {},
   "source": [
    "### Water stress functions"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
750
   "id": "invisible-merchant",
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
   "metadata": {},
   "outputs": [],
   "source": [
    "def rising_slope_compiled():\n",
    "    \"\"\"Compile the slope of the function between theta 4 and theta 3\"\"\"\n",
    "    \n",
    "    rising_slope = aesara_function([theta,theta_3, theta_4], [eq_theta_4_3.rhs], dims = {theta:1, theta_3:1, theta_4:1})\n",
    "    \n",
    "    return(rising_slope)\n",
    "\n",
    "def desc_slope_compiled():\n",
    "    \"\"\"Compile the slope of the function between theta 2 and theta 1\"\"\"\n",
    "    \n",
    "    desc_slope = aesara_function([theta,theta_1, theta_2], [eq_theta_2_1.rhs], dims = {theta:1, theta_1:1, theta_2:1})\n",
    "    \n",
    "    return(desc_slope)"
   ]
  },
  {
   "cell_type": "markdown",
771
   "id": "ready-aurora",
772
773
774
775
776
777
778
779
   "metadata": {},
   "source": [
    "### Soil water potential"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
780
   "id": "impossible-potential",
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
   "metadata": {},
   "outputs": [],
   "source": [
    "def relative_saturation_compiled(ThetaRes, ThetaSat):\n",
    "    \"\"\"Compile the relative saturation function of a soil\"\"\"\n",
    "    Dict_value = {theta_res : ThetaRes, theta_sat : ThetaSat}\n",
    "    \n",
    "    S_mvg_func = aesara_function([theta], [eq_sat_degree.rhs.subs(Dict_value)], dims = {theta:1})\n",
    "    \n",
    "    return(S_mvg_func)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
796
   "id": "choice-instrument",
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
   "metadata": {},
   "outputs": [],
   "source": [
    "def Psi_compiled(alphaVal, nVal):\n",
    "    \"\"\"Compile the soil water retention function as function of theta\"\"\"\n",
    "    mVal = 1-1/nVal\n",
    "    \n",
    "    Dict_value = {alpha : alphaVal, n : nVal, m : mVal}\n",
    "    \n",
    "    Psi_function = aesara_function([S_mvg], [eq_MVG_h.rhs.subs(Dict_value)], dims = {S_mvg:1})\n",
    "    \n",
    "    return(Psi_function)"
   ]
  },
  {
   "cell_type": "markdown",
813
   "id": "specific-awareness",
814
815
816
817
818
819
820
821
   "metadata": {},
   "source": [
    "### Penman-Monteith"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
822
   "id": "direct-chess",
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
   "metadata": {},
   "outputs": [],
   "source": [
    "def Delta_compiled():\n",
    "    \"\"\"Compile the Delta function\"\"\"\n",
    "    \n",
    "    # creating the dictionnary with all default values from the above defined constants\n",
    "    var_dict = Variable.__defaults__.copy()\n",
    "    \n",
    "    # computing delta values out of temperature values (slope of the water pressure curve)\n",
    "    Delta_func = aesara_function([T],[eq_Delta.rhs.subs(var_dict)], dims = {T:1})\n",
    "    \n",
    "    return(Delta_func)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
841
   "id": "emotional-aquarium",
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
   "metadata": {},
   "outputs": [],
   "source": [
    "def VH_func_compiled(z_val):\n",
    "    \"\"\"Compute the vegetation height function\n",
    "    --------------------------------------------------------\n",
    "    z : height of the measurements (m)\n",
    "    kappa : Von Karman constant\n",
    "    \n",
    "    w : wind velocity (m/s)\n",
    "    u_star : shear stress velocity (m/s)\n",
    "    --------------------------------------------------------\n",
    "    \n",
    "    Return a function with w and u_star as degrees of freedom\n",
    "    \"\"\"\n",
    "    # get the constant values\n",
    "    Dict_value = {z:z_val,kappa:kappa.definition.default}\n",
    "    \n",
    "    # compile the function\n",
    "    VH_func = aesara_function([w,u_star],[VH.definition.expr.subs(Dict_value)], dims = {w:1, u_star:1})\n",
    "    \n",
    "    return(VH_func)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
869
   "id": "eleven-experiment",
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
   "metadata": {},
   "outputs": [],
   "source": [
    "def d_func_compiled():\n",
    "    \"\"\"Compile the zero plane displacement height function\n",
    "    --------------------------------------------------------\n",
    "    VH : Vegetation height\n",
    "    --------------------------------------------------------\n",
    "    \n",
    "    return a function with VH as degree of freedom\n",
    "    \"\"\"\n",
    "    \n",
    "    # compile the function \n",
    "    d_func = aesara_function([VH], [d.definition.expr], dims = {VH:1})\n",
    "    \n",
    "    return(d_func)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
891
   "id": "responsible-williams",
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
   "metadata": {},
   "outputs": [],
   "source": [
    "def zom_func_compiled():\n",
    "    \"\"\"Compile the characteristic momentum height exchange\n",
    "    --------------------------------------------------------\n",
    "    VH : Vegetation height\n",
    "    --------------------------------------------------------\n",
    "    \n",
    "    return a function with VH as degree of freedom\n",
    "    \"\"\"\n",
    "    \n",
    "    # compile the function \n",
    "    zom_func = aesara_function([VH], [z_om.definition.expr], dims = {VH:1})\n",
    "    \n",
    "    return(zom_func)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
913
   "id": "chemical-reform",
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
   "metadata": {},
   "outputs": [],
   "source": [
    "def zoh_func_compiled():\n",
    "    \"\"\"Compile the characteristic heat height exchange\n",
    "    --------------------------------------------------------\n",
    "    VH : Vegetation height\n",
    "    --------------------------------------------------------\n",
    "    \n",
    "    return a function with VH as degree of freedom\n",
    "    \"\"\"\n",
    "    \n",
    "    # compile the function \n",
    "    zoh_func = aesara_function([z_om], [z_oh.definition.expr], dims = {z_om:1})\n",
    "    \n",
    "    return(zoh_func)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
935
   "id": "piano-lesbian",
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
   "metadata": {},
   "outputs": [],
   "source": [
    "def ra_func_compiled(z_val):\n",
    "    \"\"\"Substitutes the different terms of the r_a expression\n",
    "    --------------------------------------------------------\n",
    "    z : height of the measurement (m)\n",
    "    \n",
    "    d : zero plane displacement height (m)\n",
    "    zoh_val : characteristic height of the heat transfert\n",
    "    zom_val : characteristic height of the momentum transfert\n",
    "    --------------------------------------------------------\n",
    "    \n",
    "    returns the compiled expression of r_a evaluable according to the wind speed\n",
    "    \"\"\"\n",
    "    # evaluate the values in the expression\n",
    "    Dict_value = {z:z_val,kappa:kappa.definition.default}\n",
    "    \n",
    "    # compile the function\n",
    "    ra_func = aesara_function([z_om,z_oh,d,w], [r_a.definition.expr.subs(Dict_value)], dims = {z_om:1,z_oh:1,d:1,w:1})\n",
    "    \n",
    "    return(ra_func)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
963
   "id": "stunning-bullet",
Oscar Corvi's avatar
Oscar Corvi committed
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
   "metadata": {},
   "outputs": [],
   "source": [
    "def ea_func_compiled():\n",
    "    \"\"\" Compute the actual water vapour deficit with RH and T (min/max) left as degree of freedom\n",
    "    --------------------------------------------------------\n",
    "    c1 : internal variable \n",
    "    c2 : internal variable \n",
    "    \n",
    "    T_min : time serie of daily min temperature\n",
    "    T_max : time serie of daily max temperature \n",
    "    RH_min : time serie of daily min relative humidity \n",
    "    RH_max : time serie of daily max relative humidity\n",
    "    --------------------------------------------------------\n",
    "    \n",
    "    retunrs the compiled expression of the e_a function with four degrees of freedom \n",
    "    \"\"\"\n",
    "    \n",
    "    # get the constants\n",
    "    Dict_value = {c1_e:c1_e.definition.default, c2_e:c2_e.definition.default}\n",
    "    \n",
    "    #compile the function\n",
    "    ea_func = aesara_function([T_min,T_max,RH_min,RH_max],[e_a.definition.expr.subs(Dict_value)], dims={T_min:1, T_max:1, RH_min:1, RH_max:1})\n",
    "    \n",
    "    return(ea_func)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
994
   "id": "functioning-relation",
Oscar Corvi's avatar
Oscar Corvi committed
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
   "metadata": {},
   "outputs": [],
   "source": [
    "def es_func_compiled():\n",
    "    \"\"\"Compute the saturation water vapour deficit with T (min / max) left as degree of freedom \n",
    "    --------------------------------------------------------\n",
    "    c1 : internal variable \n",
    "    c2 : internal variable \n",
    "    \n",
    "    T_min : time serie of daily min temperature\n",
    "    T_max : time serie of daily max temperature \n",
    "    --------------------------------------------------------\n",
    "    \n",
    "    retunrs the compiled expression of the e_s function with four degrees of freedom \n",
    "    \"\"\"\n",
    "    \n",
    "    # get the constants\n",
    "    Dict_value = {c1_e:c1_e.definition.default, c2_e:c2_e.definition.default}\n",
    "    \n",
    "    #compile the function\n",
    "    ea_func = aesara_function([T_min,T_max],[e_s.definition.expr.subs(Dict_value)], dims={T_min:1, T_max:1})\n",
    "    \n",
    "    return(ea_func)    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
1023
   "id": "fuzzy-nursery",
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
   "metadata": {},
   "outputs": [],
   "source": [
    "def PM_compiled():\n",
    "    \"\"\" Compute the compiled version of the PM VPD equation\n",
    "    --------------------------------------------------------\n",
    "    c_p : specific heat of the air\n",
    "    rho_a : mean air density\n",
    "    gamma : psychrometric constant\n",
    "    L : Latent heat flux\n",
    "    \n",
    "    r_s : Surface resistance -> given (can also be modeled)\n",
    "    G : ground heat flux -> comes from the data\n",
    "    Rn : net radiation flux -> comes from the data \n",
    "    Delta : slope of the saturation curve -> computed above\n",
    "    r_a : aerodynamic resistance -> computed above\n",
    "    --------------------------------------------------------\n",
    "    \n",
    "    returns the evaporation flux (in mm/time) with Delta, G, Rn, e_a, e_s, r_a as degrees of freedom\n",
    "    \"\"\"\n",
    "    \n",
    "    # get the constant values\n",
    "    Dict_value = {c_p:c_p.definition.default, rho_a:rho_a.definition.default, L:L.definition.default, gamma:gamma.definition.default}\n",
    "    \n",
    "    # compile the function\n",
    "    PM_func = aesara_function([G,Rn,Delta,VPD,g_a, g_s], [eq_PM_g.rhs.subs(Dict_value)], dims = {G:1,Rn:1,Delta:1,VPD:1,g_a:1, g_s:1})\n",
    "    \n",
    "    return(PM_func)"
   ]
  },
  {
   "cell_type": "code",
Oscar Corvi's avatar
Oscar Corvi committed
1056
   "execution_count": 22,
1057
   "id": "eleven-approval",
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
   "metadata": {},
   "outputs": [],
   "source": [
    "def PT_compiled():\n",
    "    \"\"\"Compute the Priestley-Taylor equation,\n",
    "    need 4 input : temperature, net radiations, ground heat flux and alpha PT parameter\n",
    "    Each must be given as np.array\n",
    "    Return the compiled function\n",
    "    \"\"\"\n",
    "    \n",
    "    # creating the dictionnary with all default values from the above defined constants\n",
    "    var_dict = Variable.__defaults__.copy()\n",
    "    \n",
    "    # Computing the values of evaporation using the Priestley-Taylor model\n",
    "    PT_func = aesara_function([Delta,Rn,G, alpha_PT],[eq_PT.rhs.subs(var_dict)],dims = {Delta:1,Rn:1,G:1, alpha_PT:1})\n",
    "\n",
    "    return(PT_func)"
   ]
  },
  {
   "cell_type": "code",
Oscar Corvi's avatar
Oscar Corvi committed
1079
   "execution_count": 23,
1080
   "id": "hispanic-romance",
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
   "metadata": {},
   "outputs": [],
   "source": [
    "def rs_PM_inv():\n",
    "    \"Derive the time serie of the surface resistance out of the observed latent heat fluxes --> inverse modelling of the PM equation\"\n",
    "    \n",
    "    #get the constant values \n",
    "    Dict_value = {c_p:c_p.definition.default, rho_a:rho_a.definition.default, L:L.definition.default, gamma:gamma.definition.default}\n",
    "    \n",
    "    # compile the function\n",
    "    Inv_PM = aesara_function([E,G,Rn,Delta,VPD,r_a], [eq_PM_inv.rhs.subs(Dict_value)], dims = {E:1,G:1,Rn:1,Delta:1,VPD:1,r_a:1})\n",
    "    \n",
    "    return(Inv_PM)"
   ]
  },
  {
   "cell_type": "markdown",
1098
   "id": "thorough-compact",
1099
1100
1101
1102
1103
1104
1105
   "metadata": {},
   "source": [
    "### Assign the different compiled functions to variables functions (create the functions in python)"
   ]
  },
  {
   "cell_type": "code",
Oscar Corvi's avatar
Oscar Corvi committed
1106
   "execution_count": 24,
1107
   "id": "exempt-measure",
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
   "metadata": {},
   "outputs": [],
   "source": [
    "# Water_stress properties: \n",
    "rising_slope = rising_slope_compiled() # takes theta, theta_3, theta_4 in this order as input\n",
    "desc_slope = desc_slope_compiled() # takes theta, theta_1, theta_2 in this order as input\n",
    "\n",
    "# properties : \n",
    "delta_func = Delta_compiled() # takes Ta as input\n",
    "z_val = 23 # change the values of the aerodynamic constants here !!!\n",
    "VH_func = VH_func_compiled(z_val)\n",
    "d_func = d_func_compiled()\n",
    "zom_func = zom_func_compiled()\n",
    "zoh_func = zoh_func_compiled()\n",
    "ra_func = ra_func_compiled(z_val)\n",
Oscar Corvi's avatar
Oscar Corvi committed
1123
1124
    "eSat_func = es_func_compiled()\n",
    "ea_func = ea_func_compiled()\n",
1125
1126
1127
1128
1129
1130
1131
1132
1133
    "\n",
    "# models\n",
    "PM_func = PM_compiled()\n",
    "PT_func = PT_compiled()\n",
    "Inv_PM_func = rs_PM_inv()"
   ]
  },
  {
   "cell_type": "code",
Oscar Corvi's avatar
Oscar Corvi committed
1134
   "execution_count": 25,
1135
   "id": "wooden-indianapolis",
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
   "metadata": {},
   "outputs": [],
   "source": [
    "def stress_factor_func(psi_vec,Psi_3,Psi_4):\n",
    "    \n",
    "    Length = psi_vec.size\n",
    "    \n",
    "    Stress_func = np.zeros((Length,))\n",
    "    Psi_3 = np.array([Psi_3])\n",
    "    Psi_4 = np.array([Psi_4])\n",
    "    for j in range(Length):\n",
    "        try:\n",
    "            Psi_val = psi_vec[j]\n",
    "        except Exception as error:\n",
    "            print(psi_vec,error)\n",
    "        # have to convert float to arrays in order to run the compiled functions\n",
    "        Psi_val = np.array([Psi_val])\n",
    "        if (Psi_val < Psi_4):\n",
    "            Stress_func[j] = 0\n",
    "        elif (Psi_val >= Psi_4) & (Psi_val < Psi_3):\n",
    "            Stress_func[j] = float(rising_slope(Psi_val,Psi_3,Psi_4))\n",
    "        else:\n",
    "            Stress_func[j] = 1\n",
    "    return(Stress_func)"
   ]
  },
  {
   "cell_type": "markdown",
1164
   "id": "outer-modem",
1165
1166
1167
1168
1169
1170
1171
1172
   "metadata": {},
   "source": [
    "## Functions to run the different models\n",
    "Once the functions has been defined in sympy, compiled with aesara and assign to a useful python function, it is now time to link it with the data to carry out the final computations ! All the following functions take a dataframe as input, and the related parameters ($\\theta_3$ and $\\theta_4$ for the stress function) and return a numpy array and a dictionnary containing the values of the model run and some miscellaneous information."
   ]
  },
  {
   "cell_type": "markdown",
1173
   "id": "theoretical-lunch",
1174
1175
1176
1177
1178
1179
1180
   "metadata": {},
   "source": [
    "### Varying surface resistance model"
   ]
  },
  {
   "cell_type": "code",
Oscar Corvi's avatar
Oscar Corvi committed
1181
   "execution_count": 26,
1182
   "id": "fitted-capitol",
1183
1184
1185
   "metadata": {},
   "outputs": [],
   "source": [
Oscar Corvi's avatar
Oscar Corvi committed
1186
    "def PM_run_var(data, Psi_3_val, Psi_4_val, gs_val = 1/70, compute_VPD = False):\n",
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
    "    \"\"\"run varying SR Penman Monteith model but with VPD data instead of Ea and Es\n",
    "    -----------------------------------\n",
    "    data: list containing the data /!\\ the data should be in a specific order : Data = [Ta, Fn, Fg, Sws, Fe, Ws, Ustar, Ta_min, Ta_max, RH_min, RH_max]\n",
    "    Psi_3_val: vector of the same size as the vectors in data, full of the value Psi_3\n",
    "    Psi_4_val: vector of the same size as the vectors in data, full of the value Psi_4\n",
    "    -----------------------------------\n",
    "    \"\"\"\n",
    "    \n",
    "    # unpack the variables\n",
    "    Ta_val = data[\"Ta\"].to_numpy()\n",
    "    Fn_val = data[\"Fn\"].to_numpy()\n",
    "    Fg_val = data[\"Fg\"].to_numpy()\n",
    "    Sws_val = data[\"Sws\"].to_numpy()\n",
    "    Fe_val = data[\"Fe\"].to_numpy()\n",
    "    Ws_val = data[\"Ws\"].to_numpy()\n",
    "    Ustar_val = data[\"ustar\"].to_numpy()\n",
    "    VPD_val = data[\"VPD\"].to_numpy()\n",
    "    fPAR_val = data[\"fPAR\"].to_numpy()\n",
    "    \n",
Oscar Corvi's avatar
Oscar Corvi committed
1206
1207
1208
1209
1210
1211
1212
1213
1214
    "    if compute_VPD:\n",
    "        T_min_val = data[\"Ta_min\"]\n",
    "        T_max_val = data[\"Ta_max\"]\n",
    "        \n",
    "        RH_min_val = data[\"RH_min\"]\n",
    "        RH_max_val = data[\"RH_max\"]\n",
    "        \n",
    "        VPD_val = eSat_func(T_min_val,T_max_val) - ea_func(T_min_val,T_max_val,RH_min_val,RH_max_val)\n",
    "        \n",
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
    "    # --------------------------\n",
    "    # derive the two Penman models\n",
    "    # --------------------------\n",
    "    \n",
    "\n",
    "    # Stress factor:\n",
    "    FF_vec = stress_factor_func(Sws_val,Psi_3_val,Psi_4_val)\n",
    "    # aerodynamic resistance:\n",
    "    VH_T = VH_func(Ws_val,Ustar_val)\n",
    "    displ_T = d_func(VH_T)\n",
    "    ZOM_T = zom_func(VH_T)\n",
    "    ZOH_T = zoh_func(ZOM_T)\n",
    "    Ra_T = ra_func(ZOM_T, ZOH_T, displ_T, Ws_val)\n",
    "    Ga_T = 1/Ra_T\n",
    "\n",
    "    # surface resistance:\n",
    "    Gs_T = gs_val*FF_vec+0.0001\n",
    "    # thermodynamic parameters\n",
    "    D_T = delta_func(Ta_val)\n",
    "\n",
    "    # compile the Ea values :\n",
    "    PM_var = fPAR_val*PM_func(Fg_val,Fn_val,D_T,VPD_val,Ga_T, Gs_T) # R_s varying with theta\n",
    "    \n",
    "    Dic_var = {\"ga\":Ga_T, \"gs\":Gs_T, \"D_T\":D_T}\n",
    "    \n",
    "    return(PM_var)"
   ]
  },
  {
   "cell_type": "markdown",
1245
   "id": "enormous-delicious",
1246
1247
1248
1249
1250
1251
1252
   "metadata": {},
   "source": [
    "### Constant surface conductance model"
   ]
  },
  {
   "cell_type": "code",
Oscar Corvi's avatar
Oscar Corvi committed
1253
   "execution_count": 27,
1254
   "id": "afraid-security",
1255
1256
1257
   "metadata": {},
   "outputs": [],
   "source": [
Oscar Corvi's avatar
Oscar Corvi committed
1258
    "def PM_run_cst(data, Psi_3_val, Psi_4_val, gs_val = 1/70, compute_VPD = False):\n",
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
    "    \"\"\"run constant SR Penman Monteith mode but with VPD data instead of Ea and Es\n",
    "    -----------------------------------\n",
    "    data: list containing the data /!\\ the data should be in a specific order : Data = [Ta, Fn, Fg, Sws, Fe, Ws, Ustar, Ta_min, Ta_max, RH_min, RH_max]\n",
    "    T1_val: vector of the same size as the vectors in data, full of the value T1\n",
    "    T3_val: vector of the same size as the vectors in data, full of the value T3\n",
    "    -----------------------------------\n",
    "    \"\"\"\n",
    "    \n",
    "    # unpack the variables\n",
    "    Ta_val = data[\"Ta\"].to_numpy()\n",
    "    Fn_val = data[\"Fn\"].to_numpy()\n",
    "    Fg_val = data[\"Fg\"].to_numpy()\n",
    "    Sws_val = data[\"Sws\"].to_numpy()\n",
    "    Fe_val = data[\"Fe\"].to_numpy()\n",
    "    Ws_val = data[\"Ws\"].to_numpy()\n",
    "    Ustar_val = data[\"ustar\"].to_numpy()\n",
    "    VPD_val = data[\"VPD\"].to_numpy()\n",
    "    fPAR_val = data[\"fPAR\"].to_numpy()\n",
    "    \n",
Oscar Corvi's avatar
Oscar Corvi committed
1278
1279
1280
1281
1282
1283
1284
1285
1286
    "    if compute_VPD:\n",
    "        T_min_val = data[\"Ta_min\"]\n",
    "        T_max_val = data[\"Ta_max\"]\n",
    "        \n",
    "        RH_min_val = data[\"RH_min\"]\n",
    "        RH_max_val = data[\"RH_max\"]\n",
    "        \n",
    "        VPD_val = eSat_func(T_min_val,T_max_val) - ea_func(T_min_val,T_max_val,RH_min_val,RH_max_val)\n",
    "        \n",
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
    "    # --------------------------\n",
    "    # derive the two Penman models\n",
    "    # --------------------------\n",
    "    \n",
    "\n",
    "    # Stress factor:\n",
    "    FF_vec = stress_factor_func(Sws_val,Psi_3_val,Psi_4_val)\n",
    "    \n",
    "    # aerodynamic resistance:\n",
    "    VH_T = VH_func(Ws_val,Ustar_val)\n",
    "    displ_T = d_func(VH_T)\n",
    "    ZOM_T = zom_func(VH_T)\n",
    "    ZOH_T = zoh_func(ZOM_T)\n",
    "    Ra_T = ra_func(ZOM_T, ZOH_T, displ_T, Ws_val)\n",
    "    Ga_T = 1/Ra_T\n",
    "\n",
    "    # surface resistance:\n",
    "    Gs_C = gs_val*np.ones((Ta_val.size,)) # -> for constant resistance model -> Rs is constant and Ea = S(theta)*E_PM\n",
    "    # thermodynamic parameters\n",
    "    D_T = delta_func(Ta_val)\n",
    "\n",
    "    # compile the Ea values :\n",
    "    PM_cst = fPAR_val*FF_vec*PM_func(Fg_val,Fn_val,D_T,VPD_val,Ga_T, Gs_C) # R_s constant but stress factor in front of the PM evaluation\n",
    "    \n",
    "    Dic_var = {\"ga\":Ga_T, \"gs\":Gs_C, \"D_T\":D_T}\n",
    "    \n",
    "    return(PM_cst)"
   ]
  },
  {
   "cell_type": "markdown",
1318
   "id": "short-roberts",
1319
1320
1321
1322
1323
1324
1325
   "metadata": {},
   "source": [
    "### Benchmark Penman-Monteith model"
   ]
  },
  {
   "cell_type": "code",
Oscar Corvi's avatar
Oscar Corvi committed
1326
   "execution_count": 28,
1327
   "id": "simple-bermuda",
1328
1329
1330
   "metadata": {},
   "outputs": [],
   "source": [
1331
    "def PM_run_classic_fPAR(data, gs_val = 1/70, compute_VPD = False):\n",
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
    "    \"\"\"run classic PM model (only Rs as calibration parameter)\n",
    "    -----------------------------------\n",
    "    data: list containing the data /!\\ the data should be in a specific order : Data = [Ta, Fn, Fg, Sws, Fe, Ws, Ustar, Ta_min, Ta_max, RH_min, RH_max]\n",
    "    Rs_val: value of the SR\n",
    "    -----------------------------------\n",
    "    \"\"\"\n",
    "    \n",
    "    # unpack the variables\n",
    "    Ta_val = data[\"Ta\"].to_numpy()\n",
    "    Fn_val = data[\"Fn\"].to_numpy()\n",
    "    Fg_val = data[\"Fg\"].to_numpy()\n",
    "    Sws_val = data[\"Sws\"].to_numpy()\n",
    "    Fe_val = data[\"Fe\"].to_numpy()\n",
    "    Ws_val = data[\"Ws\"].to_numpy()\n",
    "    Ustar_val = data[\"ustar\"].to_numpy()\n",
    "    VPD_val = data[\"VPD\"].to_numpy()\n",
    "    fPAR_val = data[\"fPAR\"].to_numpy()\n",
Oscar Corvi's avatar
Oscar Corvi committed
1349
1350
1351
1352
1353
1354
1355
1356
1357
    "    \n",
    "    if compute_VPD:\n",
    "        T_min_val = data[\"Ta_min\"]\n",
    "        T_max_val = data[\"Ta_max\"]\n",
    "        \n",
    "        RH_min_val = data[\"RH_min\"]\n",
    "        RH_max_val = data[\"RH_max\"]\n",
    "        \n",
    "        VPD_val = eSat_func(T_min_val,T_max_val) - ea_func(T_min_val,T_max_val,RH_min_val,RH_max_val)\n",
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
    "            \n",
    "    # --------------------------\n",
    "    # derive the two Penman models\n",
    "    # --------------------------\n",
    "    \n",
    "    # aerodynamic resistance:\n",
    "    VH_T = VH_func(Ws_val,Ustar_val)\n",
    "    displ_T = d_func(VH_T)\n",
    "    ZOM_T = zom_func(VH_T)\n",
    "    ZOH_T = zoh_func(ZOM_T)\n",
    "    Ra_T = ra_func(ZOM_T, ZOH_T, displ_T, Ws_val)\n",
    "    Ga_T = 1/Ra_T\n",
    "\n",
    "    # surface resistance:\n",
    "    Gs_C = gs_val*np.ones((Ta_val.size,)) # -> for constant resistance model -> Rs is constant and Ea = S(theta)*E_PM\n",
    "    # thermodynamic parameters\n",
    "    D_T = delta_func(Ta_val)\n",
    "\n",
    "    # compile the Ea values :\n",
    "    PM_cst = fPAR_val*PM_func(Fg_val,Fn_val,D_T,VPD_val,Ga_T, Gs_C) # R_s constant but stress factor in front of the PM evaluation\n",
    "    \n",
    "    Dic_var = {\"ga\":Ga_T, \"gs\":Gs_C, \"D_T\":D_T}\n",
    "    \n",
    "    return(PM_cst)"
   ]
  },
1384
1385
1386
  {
   "cell_type": "code",
   "execution_count": 29,
1387
   "id": "cognitive-queens",
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
   "metadata": {},
   "outputs": [],
   "source": [
    "def PM_run_classic(data, gs_val = 1/70, compute_VPD = False):\n",
    "    \"\"\"run classic PM model (only Rs as calibration parameter)\n",
    "    -----------------------------------\n",
    "    data: list containing the data /!\\ the data should be in a specific order : Data = [Ta, Fn, Fg, Sws, Fe, Ws, Ustar, Ta_min, Ta_max, RH_min, RH_max]\n",
    "    Rs_val: value of the SR\n",
    "    -----------------------------------\n",
    "    \"\"\"\n",
    "    \n",
    "    # unpack the variables\n",
    "    Ta_val = data[\"Ta\"].to_numpy()\n",
    "    Fn_val = data[\"Fn\"].to_numpy()\n",
    "    Fg_val = data[\"Fg\"].to_numpy()\n",
    "    Sws_val = data[\"Sws\"].to_numpy()\n",
    "    Fe_val = data[\"Fe\"].to_numpy()\n",
    "    Ws_val = data[\"Ws\"].to_numpy()\n",
    "    Ustar_val = data[\"ustar\"].to_numpy()\n",
    "    VPD_val = data[\"VPD\"].to_numpy()\n",
    "    fPAR_val = data[\"fPAR\"].to_numpy()\n",
    "    \n",
    "    if compute_VPD:\n",
    "        T_min_val = data[\"Ta_min\"]\n",
    "        T_max_val = data[\"Ta_max\"]\n",
    "        \n",
    "        RH_min_val = data[\"RH_min\"]\n",
    "        RH_max_val = data[\"RH_max\"]\n",
    "        \n",
    "        VPD_val = eSat_func(T_min_val,T_max_val) - ea_func(T_min_val,T_max_val,RH_min_val,RH_max_val)\n",
    "            \n",
    "    # --------------------------\n",
    "    # derive the two Penman models\n",
    "    # --------------------------\n",
    "    \n",
    "    # aerodynamic resistance:\n",
    "    VH_T = VH_func(Ws_val,Ustar_val)\n",
    "    displ_T = d_func(VH_T)\n",
    "    ZOM_T = zom_func(VH_T)\n",
    "    ZOH_T = zoh_func(ZOM_T)\n",
    "    Ra_T = ra_func(ZOM_T, ZOH_T, displ_T, Ws_val)\n",
    "    Ga_T = 1/Ra_T\n",
    "\n",
    "    # surface resistance:\n",
    "    Gs_C = gs_val*np.ones((Ta_val.size,)) # -> for constant resistance model -> Rs is constant and Ea = S(theta)*E_PM\n",
    "    # thermodynamic parameters\n",
    "    D_T = delta_func(Ta_val)\n",
    "\n",
    "    # compile the Ea values :\n",
    "    PM_cst = PM_func(Fg_val,Fn_val,D_T,VPD_val,Ga_T, Gs_C) # R_s constant but stress factor in front of the PM evaluation\n",
    "    \n",
    "    Dic_var = {\"ga\":Ga_T, \"gs\":Gs_C, \"D_T\":D_T}\n",
    "    \n",
    "    return(PM_cst)"
   ]
  },
1444
1445
  {
   "cell_type": "markdown",
1446
   "id": "incoming-unknown",
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
   "metadata": {},
   "source": [
    "### Modified version of the PM equation\n",
    "\n",
    "2 Sided PM evapotranspiration model from *Schymanski and Or, 2017* : \n",
    "\\begin{equation}\n",
    "E = \\frac{1}{\\lambda}\\frac{\\Delta (R_n - G) + c_p \\rho_a g_a a_{sh} VPD }{\\Delta + \\gamma \\left( 1+ \\frac{g_a}{g_s} \\right) \\frac{a_{sh}}{a_s}}\n",
    "\\end{equation}\n",
    "\n",
    "with $a_{sh}$ and $a_s$ the fraction of projected area exchanging sensible heat flux with the air and fractio of one sided-leaf area covered by stomatas respectively. In the case of amphistomateous leaves, $a_s = 2$ and $a_s = 1$ for hypostomateous leaves. For the Howard Spring site, we consider $a_s = 2$"
   ]
  },
  {
   "cell_type": "code",
1461
   "execution_count": 30,
1462
   "id": "conservative-pledge",
1463
1464
1465
   "metadata": {},
   "outputs": [],
   "source": [
Oscar Corvi's avatar
Oscar Corvi committed
1466
    "def PM_run_2var(data, Psi_3_val, Psi_4_val, gs_val = 1/70, compute_VPD = False):\n",
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
    "    \"\"\"run varying SR Penman Monteith model but with VPD data instead of Ea and Es\n",
    "    -----------------------------------\n",
    "    data: list containing the data /!\\ the data should be in a specific order : Data = [Ta, Fn, Fg, Sws, Fe, Ws, Ustar, Ta_min, Ta_max, RH_min, RH_max]\n",
    "    Psi_3_val: vector of the same size as the vectors in data, full of the value Psi_3\n",
    "    Psi_4_val: vector of the same size as the vectors in data, full of the value Psi_4\n",
    "    -----------------------------------\n",
    "    \"\"\"\n",
    "    \n",
    "    # unpack the variables\n",
    "    Ta_val = data[\"Ta\"].to_numpy()\n",
    "    Fn_val = data[\"Fn\"].to_numpy()\n",
    "    Fg_val = data[\"Fg\"].to_numpy()\n",
    "    Sws_val = data[\"Sws\"].to_numpy()\n",
    "    Fe_val = data[\"Fe\"].to_numpy()\n",
    "    Ws_val = data[\"Ws\"].to_numpy()\n",
    "    Ustar_val = data[\"ustar\"].to_numpy()\n",
    "    VPD_val = data[\"VPD\"].to_numpy()\n",
    "    fPAR_val = data[\"fPAR\"].to_numpy()\n",
    "    \n",
Oscar Corvi's avatar
Oscar Corvi committed
1486
1487
1488
1489
1490
1491
1492
1493
1494
    "    if compute_VPD:\n",
    "        T_min_val = data[\"Ta_min\"]\n",
    "        T_max_val = data[\"Ta_max\"]\n",
    "        \n",
    "        RH_min_val = data[\"RH_min\"]\n",
    "        RH_max_val = data[\"RH_max\"]\n",
    "        \n",
    "        VPD_val = eSat_func(T_min_val,T_max_val) - ea_func(T_min_val,T_max_val,RH_min_val,RH_max_val)\n",
    "        \n",
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
    "    # --------------------------\n",
    "    # derive the two Penman models\n",
    "    # --------------------------\n",
    "    \n",
    "\n",
    "    # Stress factor:\n",
    "    FF_vec = stress_factor_func(Sws_val,Psi_3_val,Psi_4_val)\n",
    "    # aerodynamic resistance:\n",
    "    VH_T = VH_func(Ws_val,Ustar_val)\n",
    "    displ_T = d_func(VH_T)\n",
    "    ZOM_T = zom_func(VH_T)\n",
    "    ZOH_T = zoh_func(ZOM_T)\n",
    "    Ra_T = ra_func(ZOM_T, ZOH_T, displ_T, Ws_val)\n",
    "    Ga_T = 2/Ra_T # multiply by 2 to account for the 2 sided exchange of latent heat flux\n",
    "\n",
    "    # surface resistance:\n",
    "    Gs_T = gs_val*FF_vec+0.0001\n",
    "    # thermodynamic parameters\n",
    "    D_T = delta_func(Ta_val)\n",
    "\n",
    "    # compile the Ea values :\n",
    "    PM_var = fPAR_val*PM_func(Fg_val,Fn_val,D_T,VPD_val,Ga_T, Gs_T) # R_s varying with theta\n",
    "    \n",
    "    Dic_var = {\"ga\":Ga_T, \"gs\":Gs_T, \"D_T\":D_T}\n",
    "    \n",
    "    return(PM_var)"
   ]
  },
  {
   "cell_type": "code",
1525
   "execution_count": 31,
1526
   "id": "characteristic-virtue",
1527
1528
1529
   "metadata": {},
   "outputs": [],
   "source": [
Oscar Corvi's avatar
Oscar Corvi committed
1530
    "def PM_run_2cst(data, Psi_3_val, Psi_4_val, gs_val = 1/70, compute_VPD = False):\n",
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
    "    \"\"\"run constant SR Penman Monteith mode but with VPD data instead of Ea and Es\n",
    "    -----------------------------------\n",
    "    data: list containing the data /!\\ the data should be in a specific order : Data = [Ta, Fn, Fg, Sws, Fe, Ws, Ustar, Ta_min, Ta_max, RH_min, RH_max]\n",
    "    T1_val: vector of the same size as the vectors in data, full of the value T1\n",
    "    T3_val: vector of the same size as the vectors in data, full of the value T3\n",
    "    -----------------------------------\n",
    "    \"\"\"\n",
    "    \n",
    "    # unpack the variables\n",
    "    Ta_val = data[\"Ta\"].to_numpy()\n",
    "    Fn_val = data[\"Fn\"].to_numpy()\n",
    "    Fg_val = data[\"Fg\"].to_numpy()\n",
    "    Sws_val = data[\"Sws\"].to_numpy()\n",
    "    Fe_val = data[\"Fe\"].to_numpy()\n",
    "    Ws_val = data[\"Ws\"].to_numpy()\n",
    "    Ustar_val = data[\"ustar\"].to_numpy()\n",
    "    VPD_val = data[\"VPD\"].to_numpy()\n",
    "    fPAR_val = data[\"fPAR\"].to_numpy()\n",
    "    \n",
Oscar Corvi's avatar
Oscar Corvi committed
1550
1551
1552
1553
1554
1555
1556
1557
1558
    "    if compute_VPD:\n",
    "        T_min_val = data[\"Ta_min\"]\n",
    "        T_max_val = data[\"Ta_max\"]\n",
    "        \n",
    "        RH_min_val = data[\"RH_min\"]\n",
    "        RH_max_val = data[\"RH_max\"]\n",
    "        \n",
    "        VPD_val = eSat_func(T_min_val,T_max_val) - ea_func(T_min_val,T_max_val,RH_min_val,RH_max_val)\n",
    "        \n",
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
    "    # --------------------------\n",
    "    # derive the two Penman models\n",
    "    # --------------------------\n",
    "    \n",
    "\n",
    "    # Stress factor:\n",
    "    FF_vec = stress_factor_func(Sws_val,Psi_3_val,Psi_4_val)\n",
    "    \n",
    "    # aerodynamic resistance:\n",
    "    VH_T = VH_func(Ws_val,Ustar_val)\n",
    "    displ_T = d_func(VH_T)\n",
    "    ZOM_T = zom_func(VH_T)\n",
    "    ZOH_T = zoh_func(ZOM_T)\n",
    "    Ra_T = ra_func(ZOM_T, ZOH_T, displ_T, Ws_val)\n",
    "    Ga_T = 2/Ra_T # multiply by 2 to account for the 2 sided exchange of latent heat flux\n",
    "\n",
    "    # surface resistance:\n",
    "    Gs_C = gs_val*np.ones((Ta_val.size,)) # -> for constant resistance model -> Rs is constant and Ea = S(theta)*E_PM\n",
    "    # thermodynamic parameters\n",
    "    D_T = delta_func(Ta_val)\n",
    "\n",
    "    # compile the Ea values :\n",
    "    PM_cst = fPAR_val*FF_vec*PM_func(Fg_val,Fn_val,D_T,VPD_val,Ga_T, Gs_C) # R_s constant but stress factor in front of the PM evaluation\n",
    "    \n",
    "    Dic_var = {\"ga\":Ga_T, \"gs\":Gs_C, \"D_T\":D_T}\n",
    "    \n",
    "    return(PM_cst)"
   ]
  },
  {
   "cell_type": "markdown",
1590
   "id": "incorrect-world",
1591
1592
1593
1594
1595
1596
1597
   "metadata": {},
   "source": [
    "### Priestley and Taylor model"
   ]
  },
  {
   "cell_type": "code",
1598
   "execution_count": 32,
1599
   "id": "forced-designer",
1600
1601
1602
   "metadata": {},
   "outputs": [],
   "source": [
Oscar Corvi's avatar
Oscar Corvi committed
1603
    "def PT_run(data,Psi_3_val, Psi_4_val, alpha_val = 1.26, compute_VPD = False):\n",
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
    "    \"\"\"run classic PM model (only Rs as calibration parameter)\n",
    "    -----------------------------------\n",
    "    data: list containing the data /!\\ the data should be in a specific order : Data = [Ta, Fn, Fg, Sws, Fe, Ws, Ustar, Ta_min, Ta_max, RH_min, RH_max]\n",
    "    Rs_val: value of the SR\n",
    "    -----------------------------------\n",
    "    \"\"\"\n",
    "    \n",
    "    # unpack the variables\n",
    "    Ta_val = data[\"Ta\"].to_numpy()\n",
    "    Fn_val = data[\"Fn\"].to_numpy()\n",
    "    Fg_val = data[\"Fg\"].to_numpy()\n",
    "    Sws_val = data[\"Sws\"].to_numpy()\n",
    "    #Fe_val = data[\"Fe\"].to_numpy()\n",
    "    #Ws_val = data[\"Ws\"].to_numpy()\n",
    "    #Ustar_val = data[\"ustar\"].to_numpy()\n",
    "    VPD_val = data[\"VPD\"].to_numpy()\n",
    "    fPAR_val = data[\"fPAR\"].to_numpy()\n",
Oscar Corvi's avatar
Oscar Corvi committed
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
    "    \n",
    "    if compute_VPD:\n",
    "        T_min_val = data[\"Ta_min\"]\n",
    "        T_max_val = data[\"Ta_max\"]\n",
    "        \n",
    "        RH_min_val = data[\"RH_min\"]\n",
    "        RH_max_val = data[\"RH_max\"]\n",
    "        \n",
    "        VPD_val = eSat_func(T_min_val,T_max_val) - ea_func(T_min_val,T_max_val,RH_min_val,RH_max_val)\n",
    "        \n",
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
    "    # --------------------------\n",
    "    # derive the two Penman models\n",
    "    # --------------------------\n",
    "\n",
    "    # Stress factor:\n",
    "    FF_vec = stress_factor_func(Sws_val,Psi_3_val,Psi_4_val)\n",
    "    \n",
    "    # surface resistance:\n",
    "    Alpha_vec = alpha_val*np.ones((Ta_val.size,))\n",
    "\n",
    "    # thermodynamic parameters\n",
    "    D_T = delta_func(Ta_val)\n",
    "\n",
    "    # compile the Ea values :\n",
    "    PT_mod = fPAR_val*FF_vec*PT_func(D_T,Fn_val,Fg_val,Alpha_vec)\n",
    "    \n",
    "    Dic_var = {\"D_T\":D_T}\n",
    "    \n",
    "    return(PT_mod)"
   ]
  },
1652
1653
1654
  {
   "cell_type": "code",
   "execution_count": 33,
1655
   "id": "understood-worship",
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
   "metadata": {},
   "outputs": [],
   "source": [
    "def PT_run_potential(data,Psi_3_val, Psi_4_val, alpha_val = 1.26, compute_VPD = False):\n",
    "    \"\"\"run classic PM model (only Rs as calibration parameter)\n",
    "    -----------------------------------\n",
    "    data: list containing the data /!\\ the data should be in a specific order : Data = [Ta, Fn, Fg, Sws, Fe, Ws, Ustar, Ta_min, Ta_max, RH_min, RH_max]\n",
    "    Rs_val: value of the SR\n",
    "    -----------------------------------\n",
    "    \"\"\"\n",
    "    \n",
    "    # unpack the variables\n",
    "    Ta_val = data[\"Ta\"].to_numpy()\n",
    "    Fn_val = data[\"Fn\"].to_numpy()\n",
    "    Fg_val = data[\"Fg\"].to_numpy()\n",
    "    Sws_val = data[\"Sws\"].to_numpy()\n",
    "    #Fe_val = data[\"Fe\"].to_numpy()\n",
    "    #Ws_val = data[\"Ws\"].to_numpy()\n",
    "    #Ustar_val = data[\"ustar\"].to_numpy()\n",
    "    VPD_val = data[\"VPD\"].to_numpy()\n",
    "    fPAR_val = data[\"fPAR\"].to_numpy()\n",
    "    \n",
    "    if compute_VPD:\n",
    "        T_min_val = data[\"Ta_min\"]\n",
    "        T_max_val = data[\"Ta_max\"]\n",
    "        \n",
    "        RH_min_val = data[\"RH_min\"]\n",
    "        RH_max_val = data[\"RH_max\"]\n",
    "        \n",
    "        VPD_val = eSat_func(T_min_val,T_max_val) - ea_func(T_min_val,T_max_val,RH_min_val,RH_max_val)\n",
    "        \n",
    "    # --------------------------\n",
    "    # derive the two Penman models\n",
    "    # --------------------------\n",
    "\n",
    "    # Stress factor:\n",
    "    FF_vec = stress_factor_func(Sws_val,Psi_3_val,Psi_4_val)\n",
    "    \n",
    "    # surface resistance:\n",
    "    Alpha_vec = alpha_val*np.ones((Ta_val.size,))\n",
    "\n",
    "    # thermodynamic parameters\n",
    "    D_T = delta_func(Ta_val)\n",
    "\n",
    "    # compile the Ea values :\n",
    "    PT_mod = PT_func(D_T,Fn_val,Fg_val,Alpha_vec)\n",
    "    \n",
    "    Dic_var = {\"D_T\":D_T}\n",
    "    \n",
    "    return(PT_mod)"
   ]
  },
1708
1709
  {
   "cell_type": "markdown",
1710
   "id": "featured-landing",
1711
1712
1713
1714
1715
1716
1717
1718
   "metadata": {},
   "source": [
    "### Inverse modelling\n",
    "Compute the original $g_s$ time serie out of the data"
   ]
  },
  {
   "cell_type": "code",
1719
   "execution_count": 34,
1720
   "id": "included-nurse",
1721
1722
1723
   "metadata": {},
   "outputs": [],
   "source": [
Oscar Corvi's avatar
Oscar Corvi committed
1724
    "def inv_PM_run(data, compute_VPD = False):\n",
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
    "    \"\"\"inverse modelling of the PM equation to derive time varying surface resistance\n",
    "    -----------------------------------\n",
    "    data: list containing the data /!\\ the data should be in a specific order : Data = [Ta, Fn, Fg, Sws, Fe, Ws, Ustar, Ta_min, Ta_max, RH_min, RH_max]\n",
    "    Rs_val: value of the SR\n",
    "    -----------------------------------\n",
    "    \"\"\"\n",
    "    \n",
    "    # unpack the variables\n",
    "    Ta_val = data[\"Ta\"].to_numpy()\n",
    "    Fn_val = data[\"Fn\"].to_numpy()\n",
    "    Fg_val = data[\"Fg\"].to_numpy()\n",
    "    Sws_val = data[\"Sws\"].to_numpy()\n",
    "    Fe_val = data[\"Fe\"].to_numpy()\n",
    "    Ws_val = data[\"Ws\"].to_numpy()\n",
    "    Ustar_val = data[\"ustar\"].to_numpy()\n",
    "    VPD_val = data[\"VPD\"].to_numpy()\n",
Oscar Corvi's avatar
Oscar Corvi committed
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
    "    \n",
    "    if compute_VPD:\n",
    "        T_min_val = data[\"Ta_min\"]\n",
    "        T_max_val = data[\"Ta_max\"]\n",
    "        \n",
    "        RH_min_val = data[\"RH_min\"]\n",
    "        RH_max_val = data[\"RH_max\"]\n",
    "        \n",
    "        VPD_val = eSat_func(T_min_val,T_max_val) - ea_func(T_min_val,T_max_val,RH_min_val,RH_max_val)\n",
    "        \n",
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
    "    # --------------------------\n",
    "    # derive the two Penman models\n",
    "    # --------------------------\n",
    "    \n",
    "    # aerodynamic resistance:\n",
    "    VH_T = VH_func(Ws_val,Ustar_val)\n",
    "    displ_T = d_func(VH_T)\n",
    "    ZOM_T = zom_func(VH_T)\n",
    "    ZOH_T = zoh_func(ZOM_T)\n",
    "    Ra_T = ra_func(ZOM_T, ZOH_T, displ_T, Ws_val)\n",
    "\n",
    "    # thermodynamic parameters\n",
    "    D_T = delta_func(Ta_val)\n",
    "\n",
    "    # compile the Ea values :\n",
    "    Gs_val = 1/Inv_PM_func(Fe_val,Fg_val,Fn_val,D_T,VPD_val,Ra_T) # R_s constant but stress factor in front of the PM evaluation\n",
    "    \n",
    "    \n",
    "    return(Gs_val)"
   ]
  },
  {
   "cell_type": "markdown",
1774
   "id": "fitting-tract",
1775
1776
1777
1778
1779
1780
1781
   "metadata": {},
   "source": [
    "## Calibration algorithm"
   ]
  },
  {
   "cell_type": "code",
1782
   "execution_count": 35,
1783
   "id": "swedish-fellow",
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
   "metadata": {},
   "outputs": [],
   "source": [
    "def Likelihood(Obs,Sim,ErrorObs):\n",
    "    \"\"\"Objective function based on the optimal likelihood objective function\n",
    "    take numpy arrays as input and don't check for missing data\n",
    "    \"\"\"\n",
    "    # removing tuples that are nan values in at least one of the two time series\n",
    "    mask = np.isnan(Obs)+np.isnan(Sim)+np.isnan(ErrorObs)\n",
    "    Sim = Sim[np.where(~mask)]\n",
    "    Obs = Obs[np.where(~mask)]\n",
    "    ErrorObs = ErrorObs[np.where(~mask)]\n",
    "    \n",
    "    chi2 = np.sum(((Obs-Sim)**2)/(ErrorObs**2))\n",
    "    \n",
    "    return(chi2)"
   ]
  },
  {
   "cell_type": "code",
1804
   "execution_count": 36,
1805
   "id": "compatible-target",
Oscar Corvi's avatar
Oscar Corvi committed
1806
1807
1808
1809
1810
   "metadata": {
    "jupyter": {
     "source_hidden": true
    }
   },
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
   "outputs": [],
   "source": [
    "def MC_run(data, GsLow = 1/500, GsHig = 1, RunNb = 10000):\n",
    "    \n",
    "    \"\"\"prepare the MC run \n",
    "    -----------------------------------\n",
    "    data: list containing the data /!\\ the data should be in a specific order : Data = [Ta, Fn, Fg, Sws, Fe, Ws, Ustar, Ta_min, Ta_max, RH_min, RH_max]\n",
    "    RsLow and RsHigh: lower and upper range for the surface resistance range of value\n",
    "    RunNb: number of runs for the Monte Carlo algorithm\n",
    "    VPD_comput: boolean flag indicating if the computations should be carried out with the PM_VPD model, False by default\n",
    "    -----------------------------------\n",
    "    \"\"\"\n",
    "\n",
    "    # unpack the variables\n",
    "    Ta_val = data[\"Ta\"].to_numpy()\n",
    "    Fn_val = data[\"Fn\"].to_numpy()\n",
    "    Fg_val = data[\"Fg\"].to_numpy()\n",
    "    Sws_val = data[\"Sws\"].to_numpy()\n",
    "    Fe_val = data[\"Fe\"].to_numpy()\n",
    "    Ws_val = data[\"Ws\"].to_numpy()\n",
    "    Ustar_val = data[\"ustar\"].to_numpy()\n",
    "    VPD_val = data[\"VPD\"].to_numpy()\n",
    "    fPAR_val = data[\"fPAR\"].to_numpy()\n",
    "    errorObs = data[\"error\"].to_numpy()\n",
    "\n",
    "    L = data[\"Fe\"].size # assumption -> all input array have the same length : not checked\n",
    "\n",
    "    # MC run :\n",
    "    M = RunNb # number of calibration tuples\n",
    "\n",
    "    # initialize the storage matrix\n",
    "    Coeff_mat = np.zeros((M,4)) # Rs, T3, T4, alpha\n",
    "    Perf_mat_var = np.zeros((M,)) # 1 column for the new objective function\n",
    "    Perf_mat_cst = np.zeros((M,))\n",
    "    Perf_mat_2var = np.zeros((M,)) # 1 column for the new objective function\n",
    "    Perf_mat_2cst = np.zeros((M,))\n",
    "    Perf_mat_PM = np.zeros((M,))\n",
    "    Perf_mat_PT = np.zeros((M,))\n",
    "\n",
    "    # defining the calibration parameters ranges : \n",
    "    theta_4_low = 0\n",
    "    theta_4_upp = 1\n",
    "    theta_3_low = 0\n",
    "    theta_3_upp = 1\n",
    "    alpha_low = 1.0\n",
    "    alpha_upp = 1.5\n",
    "    \n",
    "    # main loop \n",
    "    for i in range(M):\n",
    "        \n",
    "        if i%5000 == 0:\n",
    "            print(i)\n",
    "    \n",
    "        # sample the parameters    \n",
    "        gs_sampled = GsLow + random()*(GsHig-GsLow)\n",
    "        alpha_sampled = alpha_low + random()*(alpha_upp - alpha_low)\n",
    "        theta_4_sampled = theta_4_low + random()*(theta_4_upp-theta_4_low)\n",
    "        theta_3_sampled = theta_3_low + random()*(theta_3_upp-theta_3_low)\n",
    "\n",
    "        \n",
    "        # switch both variables if T4 > T3\n",
    "        if theta_4_sampled > theta_3_sampled:\n",
    "            theta_4_sampled,theta_3_sampled = theta_3_sampled, theta_4_sampled\n",
    "        \n",
    "        #Rslp = np.full((L,),Alpha_l)\n",
    "        Theta4 = np.full((L,),theta_4_sampled)\n",
    "        Theta3 = np.full((L,),theta_3_sampled)\n",
    "        \n",
    "        # derive the two PM models\n",
    "        \n",
    "\n",
    "        PM_var,_ = PM_run_var(data, theta_3_sampled, theta_4_sampled, gs_sampled)\n",
    "        PM_cst,_ = PM_run_cst(data, theta_3_sampled, theta_4_sampled, gs_sampled)\n",
    "        PM_2var,_ = PM_run_2var(data, theta_3_sampled, theta_4_sampled, gs_sampled)\n",
    "        PM_2cst,_ = PM_run_2cst(data, theta_3_sampled, theta_4_sampled, gs_sampled)\n",
    "        PM_cla,_ = PM_run_classic(data, gs_sampled)\n",
    "        PT_cst,_ = PT_run(data, theta_3_sampled, theta_4_sampled, alpha_sampled)\n",
    "\n",
    "        # compute the objective function\n",
    "        Chi2Var = Likelihood(Fe_val, PM_var, errorObs)\n",
    "        Chi2Cst = Likelihood(Fe_val, PM_cst, errorObs)\n",
    "        Chi2Var2 = Likelihood(Fe_val, PM_2var, errorObs)\n",
    "        Chi2Cst2 = Likelihood(Fe_val, PM_2cst, errorObs)\n",
    "        Chi2PM = Likelihood(Fe_val, PM_cla, errorObs)\n",
    "        Chi2PT = Likelihood(Fe_val, PT_cst, errorObs)\n",
    "        \n",
    "\n",
    "        # store the coefficient sets\n",
    "        Coeff_mat[i,0] = gs_sampled\n",
    "        Coeff_mat[i,1] = theta_3_sampled\n",
    "        Coeff_mat[i,2] = theta_4_sampled\n",
    "        Coeff_mat[i,3] = alpha_sampled\n",
    "\n",
    "        \n",
    "        # store the performance indicators\n",
    "        Perf_mat_var[i] = Chi2Var\n",
    "        Perf_mat_cst[i] = Chi2Cst\n",
    "        Perf_mat_2var[i] = Chi2Var2\n",
    "        Perf_mat_2cst[i] = Chi2Cst2\n",
    "        Perf_mat_PM[i] = Chi2PM\n",
    "        Perf_mat_PT[i] = Chi2PT\n",
    "        \n",
    "    \n",
    "    CoeffMat = pd.DataFrame(Coeff_mat)\n",
    "    CoeffMat = CoeffMat.rename(columns={0:'Gs',1:\"Theta3\",2:\"Theta4\",3:\"Alpha\"})\n",
    "    \n",
    "    PerfVar = pd.DataFrame(Perf_mat_var)\n",
    "    PerfVar = PerfVar.rename(columns={0:'ObjVar'})\n",
    "    PerfCst = pd.DataFrame(Perf_mat_cst)\n",
    "    PerfCst = PerfCst.rename(columns={0:'ObjCst'})\n",
    "    \n",
    "    Perf2Var = pd.DataFrame(Perf_mat_2var)\n",
    "    Perf2Var = Perf2Var.rename(columns={0:'Obj2Var'})\n",
    "    Perf2Cst = pd.DataFrame(Perf_mat_2cst)\n",
    "    Perf2Cst = Perf2Cst.rename(columns={0:'Obj2Cst'})\n",
    "    \n",
    "    PerfPM = pd.DataFrame(Perf_mat_PM)\n",
    "    PerfPM = PerfPM.rename(columns={0:'ObjPM'})\n",
    "    PerfPT = pd.DataFrame(Perf_mat_PT)\n",
    "    PerfPT = PerfPT.rename(columns={0:'ObjPT'})\n",
    "    \n",
    "    ResMat = pd.concat([CoeffMat, PerfVar,Perf2Var,Perf2Cst, PerfCst, PerfPM, PerfPT], axis = 1)\n",
    "\n",
    "    \n",
    "    return(ResMat)"
   ]
  },
  {
   "cell_type": "markdown",
1940
   "id": "private-eagle",
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
   "metadata": {},
   "source": [
    "Use the global optimizer from the `scipy.optimize` package. Minimize the squared residual :\n",
    "\\begin{equation}\n",
    "\\Theta_{opt} = \\underset{\\theta_3, \\theta_4, g_s}{min} \\left( E_p(\\textbf{X}, \\theta_3, \\theta_4, g_s) - E_{obs})^2\\right)\n",
    "\\end{equation}"
   ]
  },
  {
   "cell_type": "code",
1951
   "execution_count": 37,
1952
   "id": "regulated-interaction",
1953
1954
1955
   "metadata": {},
   "outputs": [],
   "source": [
Oscar Corvi's avatar
Oscar Corvi committed
1956
    "def calibration(Data,model_run, bounds = [(0.1,1),(0.001,0.1)], compute_VPD = False):\n",
1957
    "    \n",
Oscar Corvi's avatar
Oscar Corvi committed
1958
1959
1960
1961
1962
1963
1964
    "    if compute_VPD:\n",
    "        def residual(Coeff):\n",
    "            return((model_run(Data, Coeff[0], Coeff[1], compute_VPD = True)-Data[\"Fe\"])**2).sum()\n",
    "    else:\n",
    "        def residual(Coeff):\n",
    "            return((model_run(Data, Coeff[0], Coeff[1])-Data[\"Fe\"])**2).sum()\n",
    "        \n",
1965
1966
1967
1968
1969
1970
    "    coeff_opti = optimize.shgo(residual, bounds).x\n",
    "    return(coeff_opti)"
   ]
  },
  {
   "cell_type": "markdown",
1971
   "id": "valued-vision",
1972
1973
1974
1975
1976
1977
1978
   "metadata": {},
   "source": [
    "# Part III - Experiments"
   ]
  },
  {
   "cell_type": "markdown",
1979
   "id": "intelligent-luther",
1980
1981
1982
1983
1984
1985
1986
1987
   "metadata": {},
   "source": [
    "## One site, one year\n",
    "Data from Howard Springs for the sole year 2016"
   ]
  },
  {
   "cell_type": "code",
1988
   "execution_count": 38,
1989
   "id": "organizational-chrome",
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
       "<defs>\n",
       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "</symbol>\n",
       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "</symbol>\n",
       "</defs>\n",
       "</svg>\n",
       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
       " *\n",
       " */\n",
       "\n",
       ":root {\n",
       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
       "  --xr-background-color: var(--jp-layout-color0, white);\n",
       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
       "}\n",
       "\n",
       "html[theme=dark],\n",
       "body.vscode-dark {\n",
       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
       "  --xr-border-color: #1F1F1F;\n",
       "  --xr-disabled-color: #515151;\n",
       "  --xr-background-color: #111111;\n",
       "  --xr-background-color-row-even: #111111;\n",
       "  --xr-background-color-row-odd: #313131;\n",
       "}\n",
       "\n",
       ".xr-wrap {\n",
       "  display: block;\n",
       "  min-width: 300px;\n",
       "  max-width: 700px;\n",
       "}\n",
       "\n",
       ".xr-text-repr-fallback {\n",
       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-header {\n",
       "  padding-top: 6px;\n",
       "  padding-bottom: 6px;\n",
       "  margin-bottom: 4px;\n",
       "  border-bottom: solid 1px var(--xr-border-color);\n",
       "}\n",
       "\n",
       ".xr-header > div,\n",
       ".xr-header > ul {\n",
       "  display: inline;\n",
       "  margin-top: 0;\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-obj-type,\n",
       ".xr-array-name {\n",
       "  margin-left: 2px;\n",
       "  margin-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-obj-type {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-sections {\n",
       "  padding-left: 0 !important;\n",
       "  display: grid;\n",
       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
       "}\n",
       "\n",
       ".xr-section-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-section-item input {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-item input + label {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label {\n",
       "  cursor: pointer;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label:hover {\n",
       "  color: var(--xr-font-color0);\n",
       "}\n",
       "\n",
       ".xr-section-summary {\n",
       "  grid-column: 1;\n",
       "  color: var(--xr-font-color2);\n",
       "  font-weight: 500;\n",
       "}\n",
       "\n",
       ".xr-section-summary > span {\n",
       "  display: inline-block;\n",
       "  padding-left: 0.5em;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in + label:before {\n",
       "  display: inline-block;\n",
       "  content: '►';\n",
       "  font-size: 11px;\n",
       "  width: 15px;\n",
       "  text-align: center;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label:before {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label:before {\n",
       "  content: '▼';\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label > span {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-summary,\n",
       ".xr-section-inline-details {\n",
       "  padding-top: 4px;\n",
       "  padding-bottom: 4px;\n",
       "}\n",
       "\n",
       ".xr-section-inline-details {\n",
       "  grid-column: 2 / -1;\n",
       "}\n",
       "\n",
       ".xr-section-details {\n",
       "  display: none;\n",
       "  grid-column: 1 / -1;\n",
       "  margin-bottom: 5px;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-array-wrap {\n",
       "  grid-column: 1 / -1;\n",
       "  display: grid;\n",
       "  grid-template-columns: 20px auto;\n",
       "}\n",
       "\n",
       ".xr-array-wrap > label {\n",
       "  grid-column: 1;\n",
       "  vertical-align: top;\n",
       "}\n",
       "\n",
       ".xr-preview {\n",
       "  color: var(--xr-font-color3);\n",
       "}\n",
       "\n",
       ".xr-array-preview,\n",
       ".xr-array-data {\n",
       "  padding: 0 5px !important;\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-array-data,\n",
       ".xr-array-in:checked ~ .xr-array-preview {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-array-in:checked ~ .xr-array-data,\n",
       ".xr-array-preview {\n",
       "  display: inline-block;\n",
       "}\n",
       "\n",
       ".xr-dim-list {\n",
       "  display: inline-block !important;\n",
       "  list-style: none;\n",
       "  padding: 0 !important;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list li {\n",
       "  display: inline-block;\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list:before {\n",
       "  content: '(';\n",
       "}\n",
       "\n",
       ".xr-dim-list:after {\n",
       "  content: ')';\n",
       "}\n",
       "\n",
       ".xr-dim-list li:not(:last-child):after {\n",
       "  content: ',';\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-has-index {\n",
       "  font-weight: bold;\n",
       "}\n",
       "\n",
       ".xr-var-list,\n",
       ".xr-var-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-var-item > div,\n",
       ".xr-var-item label,\n",
       ".xr-var-item > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-even);\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-var-item > .xr-var-name:hover span {\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-var-list > li:nth-child(odd) > div,\n",
       ".xr-var-list > li:nth-child(odd) > label,\n",
       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-odd);\n",
       "}\n",
       "\n",
       ".xr-var-name {\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-var-dims {\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-var-dtype {\n",
       "  grid-column: 3;\n",
       "  text-align: right;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-var-preview {\n",
       "  grid-column: 4;\n",
       "}\n",
       "\n",
       ".xr-var-name,\n",
       ".xr-var-dims,\n",
       ".xr-var-dtype,\n",
       ".xr-preview,\n",
       ".xr-attrs dt {\n",
       "  white-space: nowrap;\n",
       "  overflow: hidden;\n",
       "  text-overflow: ellipsis;\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-var-name:hover,\n",
       ".xr-var-dims:hover,\n",
       ".xr-var-dtype:hover,\n",
       ".xr-attrs dt:hover {\n",
       "  overflow: visible;\n",
       "  width: auto;\n",
       "  z-index: 1;\n",
       "}\n",
       "\n",
       ".xr-var-attrs,\n",
       ".xr-var-data {\n",
       "  display: none;\n",
       "  background-color: var(--xr-background-color) !important;\n",
       "  padding-bottom: 5px !important;\n",
       "}\n",
       "\n",
       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
       ".xr-var-data-in:checked ~ .xr-var-data {\n",
       "  display: block;\n",
       "}\n",
       "\n",
       ".xr-var-data > table {\n",
       "  float: right;\n",
       "}\n",
       "\n",
       ".xr-var-name span,\n",
       ".xr-var-data,\n",
       ".xr-attrs {\n",
       "  padding-left: 25px !important;\n",
       "}\n",
       "\n",
       ".xr-attrs,\n",
       ".xr-var-attrs,\n",
       ".xr-var-data {\n",
       "  grid-column: 1 / -1;\n",
       "}\n",
       "\n",
       "dl.xr-attrs {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  display: grid;\n",
       "  grid-template-columns: 125px auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt,\n",
       ".xr-attrs dd {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  float: left;\n",
       "  padding-right: 10px;\n",
       "  width: auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt {\n",
       "  font-weight: normal;\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-attrs dt:hover span {\n",
       "  display: inline-block;\n",
       "  background: var(--xr-background-color);\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-attrs dd {\n",
       "  grid-column: 2;\n",
       "  white-space: pre-wrap;\n",
       "  word-break: break-all;\n",
       "}\n",
       "\n",
       ".xr-icon-database,\n",
       ".xr-icon-file-text2 {\n",
       "  display: inline-block;\n",
       "  vertical-align: middle;\n",
       "  width: 1em;\n",
       "  height: 1.5em !important;\n",
       "  stroke-width: 0;\n",
       "  stroke: currentColor;\n",
       "  fill: currentColor;\n",
       "}\n",
       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
       "Dimensions:                (latitude: 1, longitude: 1, time: 315551)\n",
       "Coordinates:\n",
       "  * time                   (time) datetime64[ns] 2002-01-01T00:30:00 ... 2019...\n",
       "  * latitude               (latitude) float64 -12.5\n",
       "  * longitude              (longitude) float64 131.2\n",
       "Data variables: (12/143)\n",
       "    Ah                     (time, latitude, longitude) float64 dask.array&lt;chunksize=(315551, 1, 1), meta=np.ndarray&gt;\n",
       "    Ah_QCFlag              (time, latitude, longitude) float64 dask.array&lt;chunksize=(315551, 1, 1), meta=np.ndarray&gt;\n",
       "    Ah_HMP_23m             (time, latitude, longitude) float64 dask.array&lt;chunksize=(315551, 1, 1), meta=np.ndarray&gt;\n",
       "    Ah_HMP_23m_QCFlag      (time, latitude, longitude) float64 dask.array&lt;chunksize=(315551, 1, 1), meta=np.ndarray&gt;\n",
       "    Ah_HMP_2m              (time, latitude, longitude) float64 dask.array&lt;chunksize=(315551, 1, 1), meta=np.ndarray&gt;\n",
       "    Ah_HMP_2m_QCFlag       (time, latitude, longitude) float64 dask.array&lt;chunksize=(315551, 1, 1), meta=np.ndarray&gt;\n",
       "    ...                     ...\n",
       "    Ws_SONIC_Av_QCFlag     (time, latitude, longitude) float64 dask.array&lt;chunksize=(315551, 1, 1), meta=np.ndarray&gt;\n",
       "    ps                     (time, latitude, longitude) float64 dask.array&lt;chunksize=(315551, 1, 1), meta=np.ndarray&gt;\n",
       "    ps_QCFlag              (time, latitude, longitude) float64 dask.array&lt;chunksize=(315551, 1, 1), meta=np.ndarray&gt;\n",
       "    ustar                  (time, latitude, longitude) float64 dask.array&lt;chunksize=(315551, 1, 1), meta=np.ndarray&gt;\n",
       "    ustar_QCFlag           (time, latitude, longitude) float64 dask.array&lt;chunksize=(315551, 1, 1), meta=np.ndarray&gt;\n",
       "    crs                    float64 -2.147e+09\n",
       "Attributes: (12/50)\n",
       "    BulkDensity:              1500\n",
       "    FgDepth:                  0.08\n",
       "    OrganicContent:           0.01\n",
       "    PythonVersion:            2.7.16 |Anaconda, Inc.| (default, Mar 14 2019, ...\n",
       "    QC_version:               PyFluxPro V1.0.1\n",
       "    SwsDefault:               0.10\n",
       "    ...                       ...\n",
       "    title:                    Flux tower data set from the Howard Springs sit...\n",
       "    tower_height:             23m\n",
       "    vegetation:               Woody savanna\n",
       "    xl_datemode:              0\n",
       "    xl_filename:              E:/My Dropbox/Dropbox/Data_flux_data/Site data ...\n",
2379
       "    xl_moddatetime:           2020-01-21 11:59:06</pre><div class='xr-wrap' hidden><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-f8e6f35f-4e67-4ea4-96e9-49e74a52e8d5' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-f8e6f35f-4e67-4ea4-96e9-49e74a52e8d5' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>latitude</span>: 1</li><li><span class='xr-has-index'>longitude</span>: 1</li><li><span class='xr-has-index'>time</span>: 315551</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-950b090d-cfa9-4221-b109-38e10e84e7a3' class='xr-section-summary-in' type='checkbox'  checked><label for='section-950b090d-cfa9-4221-b109-38e10e84e7a3' class='xr-section-summary' >Coordinates: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>datetime64[ns]</div><div class='xr-var-preview xr-preview'>2002-01-01T00:30:00 ... 2019-12-...</div><input id='attrs-3d49def7-86ed-4d8d-a8cc-6f1ce44f52f4' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-3d49def7-86ed-4d8d-a8cc-6f1ce44f52f4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-336f5a87-a494-401b-b1cf-a57ee1db4387' class='xr-var-data-in' type='checkbox'><label for='data-336f5a87-a494-401b-b1cf-a57ee1db4387' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>time</dd><dt><span>standard_name :</span></dt><dd>time</dd></dl></div><div class='xr-var-data'><pre>array([&#x27;2002-01-01T00:30:00.000000000&#x27;, &#x27;2002-01-01T01:00:00.000000000&#x27;,\n",
2380
2381
       "       &#x27;2002-01-01T01:30:00.000000000&#x27;, ..., &#x27;2019-12-31T22:30:00.000000000&#x27;,\n",
       "       &#x27;2019-12-31T23:00:00.000000000&#x27;, &#x27;2019-12-31T23:30:00.000000000&#x27;],\n",
2382
       "      dtype=&#x27;datetime64[ns]&#x27;)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>latitude</span></div><div class='xr-var-dims'>(latitude)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-12.5</div><input id='attrs-177b5e7a-f9d7-444a-a5d0-9c5bfd8c7ea8' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-177b5e7a-f9d7-444a-a5d0-9c5bfd8c7ea8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bddd9272-b9d2-4feb-bb61-9458fb15463b' class='xr-var-data-in' type='checkbox'><label for='data-bddd9272-b9d2-4feb-bb61-9458fb15463b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>latitude</dd><dt><span>standard_name :</span></dt><dd>latitude</dd><dt><span>units :</span></dt><dd>degrees north</dd></dl></div><div class='xr-var-data'><pre>array([-12.4952])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>longitude</span></div><div class='xr-var-dims'>(longitude)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>131.2</div><input id='attrs-60eb2e1f-eac9-4317-b668-09ade15c194e' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-60eb2e1f-eac9-4317-b668-09ade15c194e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e06553e2-3425-4c31-9f86-7173a58ea16b' class='xr-var-data-in' type='checkbox'><label for='data-e06553e2-3425-4c31-9f86-7173a58ea16b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>longitude</dd><dt><span>standard_name :</span></dt><dd>longitude</dd><dt><span>units :</span></dt><dd>degrees east</dd></dl></div><div class='xr-var-data'><pre>array([131.15005])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-a781116b-528f-432c-945a-8515b9250c50' class='xr-section-summary-in' type='checkbox'  ><label for='section-a781116b-528f-432c-945a-8515b9250c50' class='xr-section-summary' >Data variables: <span>(143)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>Ah</span></div><div class='xr-var-dims'>(time, latitude, longitude)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(315551, 1, 1), meta=np.ndarray&gt;</div><input id='attrs-2c05e9a6-7526-4b37-9a85-3709143dc8b8' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-2c05e9a6-7526-4b37-9a85-3709143dc8b8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ebcccba2-65d1-45cb-9183-1c3cceb4dcbf' class='xr-var-data-in' type='checkbox'><label for='data-ebcccba2-65d1-45cb-9183-1c3cceb4dcbf' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>coverage_L3 :</span></dt><dd>85</dd><dt><span>coverage_L4 :</span></dt><dd>100</dd><dt><span>description_L4 :</span></dt><dd>Gap filled using aws, access, era5, </dd><dt><span>group_name :</span></dt><dd></dd><dt><span>height :</span></dt><dd>23m</dd><dt><span>instrument :</span></dt><dd>HMP45C</dd><dt><span>long_name :</span></dt><dd>Absolute humidity</dd><dt><span>serial_number :</span></dt><dd></dd><dt><span>standard_name :</span></dt><dd>not defined</dd><dt><span>units :</span></dt><dd>g/m3</dd><dt><span>valid_range :</span></dt><dd>1,35</dd></dl></div><div class='xr-var-data'><table>\n",
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
       "<tr>\n",
       "<td>\n",
       "<table>\n",
       "  <thead>\n",
       "    <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr><th> Bytes </th><td> 2.41 MiB </td> <td> 2.41 MiB </td></tr>\n",
       "    <tr><th> Shape </th><td> (315551, 1, 1) </td> <td> (315551, 1, 1) </td></tr>\n",
       "    <tr><th> Count </th><td> 4 Tasks </td><td> 1 Chunks </td></tr>\n",
       "    <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</td>\n",
       "<td>\n",
       "<svg width=\"156\" height=\"146\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
       "\n",
       "  <!-- Horizontal lines -->\n",
       "  <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"10\" y1=\"25\" x2=\"80\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Vertical lines -->\n",
       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Colored Rectangle -->\n",
       "  <polygon points=\"10.0,0.0 80.58823529411765,70.58823529411765 80.58823529411765,96.00085180870013 10.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
       "\n",
       "  <!-- Horizontal lines -->\n",
       "  <line x1=\"10\" y1=\"0\" x2=\"35\" y2=\"0\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"80\" y1=\"70\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Vertical lines -->\n",
       "  <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"35\" y1=\"0\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Colored Rectangle -->\n",
       "  <polygon points=\"10.0,0.0 35.41261651458248,0.0 106.00085180870013,70.58823529411765 80.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
       "\n",
       "  <!-- Horizontal lines -->\n",
       "  <line x1=\"80\" y1=\"70\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"80\" y1=\"96\" x2=\"106\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Vertical lines -->\n",
       "  <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"106\" y1=\"70\" x2=\"106\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Colored Rectangle -->\n",
       "  <polygon points=\"80.58823529411765,70.58823529411765 106.00085180870013,70.58823529411765 106.00085180870013,96.00085180870013 80.58823529411765,96.00085180870013\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
       "\n",
       "  <!-- Text -->\n",
       "  <text x=\"93.294544\" y=\"116.000852\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >1</text>\n",
       "  <text x=\"126.000852\" y=\"83.294544\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,126.000852,83.294544)\">1</text>\n",
       "  <text x=\"35.294118\" y=\"80.706734\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,80.706734)\">315551</text>\n",
       "</svg>\n",
       "</td>\n",
       "</tr>\n",
2440
       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Ah_QCFlag</span></div><div class='xr-var-dims'>(time, latitude, longitude)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(315551, 1, 1), meta=np.ndarray&gt;</div><input id='attrs-d74cdfa8-d2e2-4afe-b387-49ff8762ab75' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d74cdfa8-d2e2-4afe-b387-49ff8762ab75' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7cb9b4ba-122c-40f1-ad27-c9769e187aff' class='xr-var-data-in' type='checkbox'><label for='data-7cb9b4ba-122c-40f1-ad27-c9769e187aff' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>AhQC flag</dd><dt><span>units :</span></dt><dd>none</dd></dl></div><div class='xr-var-data'><table>\n",
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
       "<tr>\n",
       "<td>\n",
       "<table>\n",
       "  <thead>\n",
       "    <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr><th> Bytes </th><td> 2.41 MiB </td> <td> 2.41 MiB </td></tr>\n",
       "    <tr><th> Shape </th><td> (315551, 1, 1) </td> <td> (315551, 1, 1) </td></tr>\n",
       "    <tr><th> Count </th><td> 5 Tasks </td><td> 1 Chunks </td></tr>\n",
       "    <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</td>\n",
       "<td>\n",
       "<svg width=\"156\" height=\"146\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
       "\n",
       "  <!-- Horizontal lines -->\n",
       "  <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"10\" y1=\"25\" x2=\"80\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Vertical lines -->\n",
       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Colored Rectangle -->\n",
       "  <polygon points=\"10.0,0.0 80.58823529411765,70.58823529411765 80.58823529411765,96.00085180870013 10.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
       "\n",
       "  <!-- Horizontal lines -->\n",
       "  <line x1=\"10\" y1=\"0\" x2=\"35\" y2=\"0\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"80\" y1=\"70\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Vertical lines -->\n",
       "  <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"35\" y1=\"0\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Colored Rectangle -->\n",
       "  <polygon points=\"10.0,0.0 35.41261651458248,0.0 106.00085180870013,70.58823529411765 80.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
       "\n",
       "  <!-- Horizontal lines -->\n",
       "  <line x1=\"80\" y1=\"70\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"80\" y1=\"96\" x2=\"106\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Vertical lines -->\n",
       "  <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"106\" y1=\"70\" x2=\"106\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Colored Rectangle -->\n",
       "  <polygon points=\"80.58823529411765,70.58823529411765 106.00085180870013,70.58823529411765 106.00085180870013,96.00085180870013 80.58823529411765,96.00085180870013\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
       "\n",
       "  <!-- Text -->\n",
       "  <text x=\"93.294544\" y=\"116.000852\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >1</text>\n",
       "  <text x=\"126.000852\" y=\"83.294544\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,126.000852,83.294544)\">1</text>\n",
       "  <text x=\"35.294118\" y=\"80.706734\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,80.706734)\">315551</text>\n",
       "</svg>\n",
       "</td>\n",
       "</tr>\n",
2498
       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Ah_HMP_23m</span></div><div class='xr-var-dims'>(time, latitude, longitude)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(315551, 1, 1), meta=np.ndarray&gt;</div><input id='attrs-da7ef8c9-0ef5-4507-b111-ed6f9275317a' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-da7ef8c9-0ef5-4507-b111-ed6f9275317a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9f4c007f-c1b4-4956-8b6d-c878e1b081d0' class='xr-var-data-in' type='checkbox'><label for='data-9f4c007f-c1b4-4956-8b6d-c878e1b081d0' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>coverage_L3 :</span></dt><dd>73</dd><dt><span>coverage_L4 :</span></dt><dd>73</dd><dt><span>group_name :</span></dt><dd></dd><dt><span>height :</span></dt><dd>23m</dd><dt><span>instrument :</span></dt><dd>HMP45C</dd><dt><span>long_name :</span></dt><dd>Absolute humidity</dd><dt><span>serial_number :</span></dt><dd></dd><dt><span>standard_name :</span></dt><dd>not defined</dd><dt><span>units :</span></dt><dd>g/m3</dd><dt><span>valid_range :</span></dt><dd>5,30</dd></dl></div><div class='xr-var-data'><table>\n",
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
       "<tr>\n",
       "<td>\n",
       "<table>\n",
       "  <thead>\n",
       "    <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr><th> Bytes </th><td> 2.41 MiB </td> <td> 2.41 MiB </td></tr>\n",
       "    <tr><th> Shape </th><td> (315551, 1, 1) </td> <td> (315551, 1, 1) </td></tr>\n",
       "    <tr><th> Count </th><td> 4 Tasks </td><td> 1 Chunks </td></tr>\n",
       "    <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</td>\n",
       "<td>\n",
       "<svg width=\"156\" height=\"146\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
       "\n",
       "  <!-- Horizontal lines -->\n",
       "  <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"10\" y1=\"25\" x2=\"80\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Vertical lines -->\n",
       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Colored Rectangle -->\n",
       "  <polygon points=\"10.0,0.0 80.58823529411765,70.58823529411765 80.58823529411765,96.00085180870013 10.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
       "\n",
       "  <!-- Horizontal lines -->\n",
       "  <line x1=\"10\" y1=\"0\" x2=\"35\" y2=\"0\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"80\" y1=\"70\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Vertical lines -->\n",
       "  <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"35\" y1=\"0\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Colored Rectangle -->\n",
       "  <polygon points=\"10.0,0.0 35.41261651458248,0.0 106.00085180870013,70.58823529411765 80.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
       "\n",
       "  <!-- Horizontal lines -->\n",
       "  <line x1=\"80\" y1=\"70\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"80\" y1=\"96\" x2=\"106\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Vertical lines -->\n",
       "  <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"106\" y1=\"70\" x2=\"106\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Colored Rectangle -->\n",
       "  <polygon points=\"80.58823529411765,70.58823529411765 106.00085180870013,70.58823529411765 106.00085180870013,96.00085180870013 80.58823529411765,96.00085180870013\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
       "\n",
       "  <!-- Text -->\n",
       "  <text x=\"93.294544\" y=\"116.000852\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >1</text>\n",
       "  <text x=\"126.000852\" y=\"83.294544\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,126.000852,83.294544)\">1</text>\n",
       "  <text x=\"35.294118\" y=\"80.706734\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,80.706734)\">315551</text>\n",
       "</svg>\n",
       "</td>\n",
       "</tr>\n",
2556
       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Ah_HMP_23m_QCFlag</span></div><div class='xr-var-dims'>(time, latitude, longitude)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(315551, 1, 1), meta=np.ndarray&gt;</div><input id='attrs-d06a0ca6-6093-4727-a762-a82d7bd7cb74' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d06a0ca6-6093-4727-a762-a82d7bd7cb74' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4e488949-95e9-4b93-b642-a109490262d3' class='xr-var-data-in' type='checkbox'><label for='data-4e488949-95e9-4b93-b642-a109490262d3' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>Ah_HMP_23mQC flag</dd><dt><span>units :</span></dt><dd>none</dd></dl></div><div class='xr-var-data'><table>\n",
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
       "<tr>\n",
       "<td>\n",
       "<table>\n",
       "  <thead>\n",
       "    <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr><th> Bytes </th><td> 2.41 MiB </td> <td> 2.41 MiB </td></tr>\n",
       "    <tr><th> Shape </th><td> (315551, 1, 1) </td> <td> (315551, 1, 1) </td></tr>\n",
       "    <tr><th> Count </th><td> 5 Tasks </td><td> 1 Chunks </td></tr>\n",
       "    <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</td>\n",
       "<td>\n",
       "<svg width=\"156\" height=\"146\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
       "\n",
       "  <!-- Horizontal lines -->\n",
       "  <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"10\" y1=\"25\" x2=\"80\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Vertical lines -->\n",
       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Colored Rectangle -->\n",
       "  <polygon points=\"10.0,0.0 80.58823529411765,70.58823529411765 80.58823529411765,96.00085180870013 10.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
       "\n",
       "  <!-- Horizontal lines -->\n",
       "  <line x1=\"10\" y1=\"0\" x2=\"35\" y2=\"0\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"80\" y1=\"70\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Vertical lines -->\n",
       "  <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"35\" y1=\"0\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Colored Rectangle -->\n",
       "  <polygon points=\"10.0,0.0 35.41261651458248,0.0 106.00085180870013,70.58823529411765 80.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
       "\n",
       "  <!-- Horizontal lines -->\n",
       "  <line x1=\"80\" y1=\"70\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"80\" y1=\"96\" x2=\"106\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Vertical lines -->\n",
       "  <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"106\" y1=\"70\" x2=\"106\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Colored Rectangle -->\n",
       "  <polygon points=\"80.58823529411765,70.58823529411765 106.00085180870013,70.58823529411765 106.00085180870013,96.00085180870013 80.58823529411765,96.00085180870013\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
       "\n",
       "  <!-- Text -->\n",
       "  <text x=\"93.294544\" y=\"116.000852\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >1</text>\n",
       "  <text x=\"126.000852\" y=\"83.294544\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,126.000852,83.294544)\">1</text>\n",
       "  <text x=\"35.294118\" y=\"80.706734\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,80.706734)\">315551</text>\n",
       "</svg>\n",
       "</td>\n",
       "</tr>\n",
2614
       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Ah_HMP_2m</span></div><div class='xr-var-dims'>(time, latitude, longitude)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(315551, 1, 1), meta=np.ndarray&gt;</div><input id='attrs-33d751ea-f59c-4dbc-be99-baba4f1d0e27' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-33d751ea-f59c-4dbc-be99-baba4f1d0e27' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7062984d-7ee3-4968-a159-3a8c712d4542' class='xr-var-data-in' type='checkbox'><label for='data-7062984d-7ee3-4968-a159-3a8c712d4542' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>coverage_L3 :</span></dt><dd>66</dd><dt><span>coverage_L4 :</span></dt><dd>66</dd><dt><span>group_name :</span></dt><dd></dd><dt><span>height :</span></dt><dd>2m</dd><dt><span>instrument :</span></dt><dd>HMP45C</dd><dt><span>long_name :</span></dt><dd>Absolute humidity</dd><dt><span>serial_number :</span></dt><dd></dd><dt><span>standard_name :</span></dt><dd>not defined</dd><dt><span>units :</span></dt><dd>g/m3</dd><dt><span>valid_range :</span></dt><dd>2,30</dd></dl></div><div class='xr-var-data'><table>\n",
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
       "<tr>\n",
       "<td>\n",
       "<table>\n",
       "  <thead>\n",
       "    <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr><th> Bytes </th><td> 2.41 MiB </td> <td> 2.41 MiB </td></tr>\n",
       "    <tr><th> Shape </th><td> (315551, 1, 1) </td> <td> (315551, 1, 1) </td></tr>\n",
       "    <tr><th> Count </th><td> 4 Tasks </td><td> 1 Chunks </td></tr>\n",
       "    <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</td>\n",
       "<td>\n",
       "<svg width=\"156\" height=\"146\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
       "\n",
       "  <!-- Horizontal lines -->\n",
       "  <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"10\" y1=\"25\" x2=\"80\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Vertical lines -->\n",
       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Colored Rectangle -->\n",
       "  <polygon points=\"10.0,0.0 80.58823529411765,70.58823529411765 80.58823529411765,96.00085180870013 10.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
       "\n",
       "  <!-- Horizontal lines -->\n",
       "  <line x1=\"10\" y1=\"0\" x2=\"35\" y2=\"0\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"80\" y1=\"70\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Vertical lines -->\n",
       "  <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"35\" y1=\"0\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Colored Rectangle -->\n",
       "  <polygon points=\"10.0,0.0 35.41261651458248,0.0 106.00085180870013,70.58823529411765 80.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
       "\n",
       "  <!-- Horizontal lines -->\n",
       "  <line x1=\"80\" y1=\"70\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"80\" y1=\"96\" x2=\"106\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Vertical lines -->\n",
       "  <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "  <line x1=\"106\" y1=\"70\" x2=\"106\" y2=\"96\" style=\"stroke-width:2\" />\n",
       "\n",
       "  <!-- Colored Rectangle -->\n",
       "  <polygon points=\"80.58823529411765,70.58823529411765 106.00085180870013,70.58823529411765 106.00085180870013,96.00085180870013 80.58823529411765,96.00085180870013\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
       "\n",
       "  <!-- Text -->\n",
       "  <text x=\"93.294544\" y=\"116.000852\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >1</text>\n",
       "  <text x=\"126.000852\" y=\"83.294544\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,126.000852,83.294544)\">1</text>\n",
       "  <text x=\"35.294118\" y=\"80.706734\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,80.706734)\">315551</text>\n",
       "</svg>\n",
       "</td>\n",
       "</tr>\n",
2672
       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Ah_HMP_2m_QCFlag</span></div><div class='xr-var-dims'>(time, latitude, longitude)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(315551, 1, 1), meta=np.ndarray&gt;</div><input id='attrs-6fd57a77-d2e6-4cc7-8adf-a127a100144c' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-6fd57a77-d2e6-4cc7-8adf-a127a100144c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-88bd9ad4-25ab-4e81-b614-724cef4794d6' class='xr-var-data-in' type='checkbox'><label for='data-88bd9ad4-25ab-4e81-b614-724cef4794d6' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>Ah_HMP_2mQC flag</dd><dt><span>units :</span></dt><dd>none</dd></dl></div><div class='xr-var-data'><table>\n",
2673
2674