Commit 7f6f1975 authored by hugocruzz's avatar hugocruzz
Browse files

MO calculated with turb HF not from net

parent a3f59e89
Pipeline #351052 passed with stage
in 17 seconds
......@@ -8,6 +8,42 @@ import xarray as xr
from datetime import timezone
import copy
def get_meteostation_data(infiles):
ds = xr.open_mfdataset(infiles, decode_times=False)
data = ds.to_dataframe().reset_index()
data = data.rename(columns = {"time":"timestamp","AirTC":"AirTC_Avg","Slrw":"SlrW_Avg", "WS":"WS_ms_S_WVT", "WindDir":"WindDir_D1_WVT", "BP":"BP_mbar_Avg"})
data = data.sort_values(by=['timestamp'], axis=0)
data.reset_index(drop=True, inplace=True)
data = data.to_dict(orient='list')
for var in data.keys():
data[var] = np.array(data[var])
data["date_dt"] = np.array([datetime.utcfromtimestamp(value) for value in data["timestamp"]])
return data
def get_tchain_data(infiles):
ds = xr.open_mfdataset(infiles, decode_times=False)
ds["temp"] = ds["temp"][0,:]
ds["temp_qual"] = ds["temp_qual"][0,:]
data = pd.DataFrame([np.array(ds["time"]), np.array(ds["temp"]), np.array(ds["temp_qual"])]).T
data.columns = ['timestamp', 'Temp', 'Temp_qual']
data = data.sort_values(by=['timestamp'], axis=0)
data.reset_index(drop=True, inplace=True)
data = data.to_dict(orient='list')
for var in data.keys():
data[var] = np.array(data[var])
data["date_dt"] = np.array([datetime.utcfromtimestamp(value) for value in data["timestamp"]])
return data
def copy_variables(variables_dict):
var_dict = dict()
for var in variables_dict:
......@@ -61,41 +97,7 @@ def chunk_from_date(files, date, chunk_period):
return chunk_files
def get_meteostation_data(infiles):
ds = xr.open_mfdataset(infiles, decode_times=False)
data = ds.to_dataframe().reset_index()
data = data.rename(columns = {"time":"timestamp","AirTC":"AirTC_Avg","Slrw":"SlrW_Avg", "WS":"WS_ms_S_WVT", "WindDir":"WindDir_D1_WVT", "BP":"BP_mbar_Avg"})
data = data.sort_values(by=['timestamp'], axis=0)
data.reset_index(drop=True, inplace=True)
data = data.to_dict(orient='list')
for var in data.keys():
data[var] = np.array(data[var])
data["date_dt"] = np.array([datetime.utcfromtimestamp(value) for value in data["timestamp"]])
return data
def get_tchain_data(infiles):
ds = xr.open_mfdataset(infiles, decode_times=False)
ds["temp"] = ds["temp"][0,:]
ds["temp_qual"] = ds["temp_qual"][0,:]
data = pd.DataFrame([np.array(ds["time"]), np.array(ds["temp"]), np.array(ds["temp_qual"])]).T
data.columns = ['timestamp', 'Temp', 'Temp_qual']
data = data.sort_values(by=['timestamp'], axis=0)
data.reset_index(drop=True, inplace=True)
data = data.to_dict(orient='list')
for var in data.keys():
data[var] = np.array(data[var])
data["date_dt"] = np.array([datetime.utcfromtimestamp(value) for value in data["timestamp"]])
return data
def get_thetis_data(infiles, threshold = 1.2):
time = np.array([])
......
......@@ -141,7 +141,7 @@ class Heatflux(object):
self.data["sHFluxes_Qlat"] = np.copy(HF.Qlat)
self.data["sHFluxes_Qsen"] = np.copy(HF.Qsen)
self.data["JB"] = sw.alpha(0.2,self.data["swT"],0)*9.81/sw.cp(0.2,self.data["swT"],0)*self.data["sHFnet"]/self.data["rho0"]
self.data["JB"] = sw.alpha(0.2,self.data["swT"],0)*9.81/sw.cp(0.2,self.data["swT"],0)*self.data["sHFturb0"]/self.data["rho0"]
self.data["LMO"] = self.data["ustar"]**3/0.4/self.data["JB"]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment