Commit da1926d1 authored by gitanjali Thakur's avatar gitanjali Thakur
Browse files

specific package to requirements

parent baa9bb4d
Pipeline #32043 failed with stage
in 2 minutes and 13 seconds
%% Cell type:code id: tags:
``` python
```
%% Cell type:markdown id: tags:
## extracting fpar values Howard spring from others_tiff (-12.4943, 131.1523)
%% Cell type:code id: tags:
``` python
!pip install matplotlib
```
%%%% Output: stream
Collecting matplotlib
Downloading matplotlib-3.2.1-cp37-cp37m-manylinux1_x86_64.whl (12.4 MB)
 |████████████████████████████████| 12.4 MB 3.4 MB/s eta 0:00:01 |█▋ | 614 kB 3.4 MB/s eta 0:00:04 |████ | 1.6 MB 3.4 MB/s eta 0:00:04
[?25hCollecting pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1
Downloading pyparsing-2.4.7-py2.py3-none-any.whl (67 kB)
 |████████████████████████████████| 67 kB 2.1 MB/s eta 0:00:01
[?25hRequirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.7/site-packages (from matplotlib) (2.8.1)
Requirement already satisfied: numpy>=1.11 in /opt/conda/lib/python3.7/site-packages (from matplotlib) (1.18.4)
Collecting kiwisolver>=1.0.1
Downloading kiwisolver-1.2.0-cp37-cp37m-manylinux1_x86_64.whl (88 kB)
 |████████████████████████████████| 88 kB 1.4 MB/s eta 0:00:01
[?25hCollecting cycler>=0.10
Downloading cycler-0.10.0-py2.py3-none-any.whl (6.5 kB)
Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.7/site-packages (from python-dateutil>=2.1->matplotlib) (1.14.0)
Installing collected packages: pyparsing, kiwisolver, cycler, matplotlib
Successfully installed cycler-0.10.0 kiwisolver-1.2.0 matplotlib-3.2.1 pyparsing-2.4.7
%% Cell type:code id: tags:
``` python
import gdal
import matplotlib.pyplot as plt
import numpy as np
import glob
from PIL import Image
from PIL.TiffTags import TAGS
import pandas as pd
from datetime import datetime, timedelta
import os
from pathlib import Path
```
%%%% Output: error
---------------------------------------------------------------------------
ModuleNotFoundError Traceback (most recent call last)
<ipython-input-1-b0d3b8197055> in <module>
1 import gdal
----> 2 import matplotlib.pyplot as plt
3 import numpy as np
4 import glob
5 from PIL import Image
ModuleNotFoundError: No module named 'matplotlib'
%% Cell type:code id: tags:
``` python
path = '/home/gitanjalithakur/Documents/Aerodynamic_conductance/lst-retrival-from-fluxnet-data/fpar_data/others_fpar/others_tiff/'
fpar500m=[]
fpar_qc=[]
fpar_lai_qc=[]
fpar_stddev=[]
lai500m=[]
lai_stdev=[]
fparlist = Path(path).glob('**/*_Fpar_500m.tif')
fparqclist = Path(path).glob('**/*_FparExtra_QC.tif')
laiqclist = Path(path).glob('**/*_FparLai_QC.tif')
fparstddevlist = Path(path).glob('**/*_FparStdDev_500m.tif')
lailist = Path(path).glob('**/*_FparStdDev_500m.tif')
laistddevlist = Path(path).glob('**/*_FparStdDev_500m.tif')
for pathfpar in fparlist:
fpar500m.append(str(pathfpar))
for pathfparqc in fparqclist:
fpar_qc.append(str(pathfparqc))
for pathlaiqc in laiqclist:
fpar_lai_qc.append (str(pathlaiqc))
for pathfparstdv in fparstddevlist:
fpar_stddev.append (str(pathfparstdv))
for pathlai in lailist:
lai500m.append (str(pathlai))
for pathlaistdv in laistddevlist:
lai_stdev.append (str(pathlaistdv))
# print(path_in_str)
```
%% Cell type:markdown id: tags:
## metadata
%% Cell type:code id: tags:
``` python
g=gdal.Open(fpar500m[1])
met_data=g.GetMetadata()
#print(met_data)
```
%% Cell type:code id: tags:
``` python
g=gdal.Open(fpar500m[1])
met_data=g.GetMetadata()
g1=gdal.Open(fpar_qc[1])
met_data1=g1.GetMetadata()
g2=gdal.Open(fpar_lai_qc[10])
met_data2=g2.GetMetadata()
g3=gdal.Open(fpar_stddev[1])
met_data3=g3.GetMetadata()
g4=gdal.Open(lai500m[1])
met_data4=g4.GetMetadata()
g5=gdal.Open(lai_stdev[1])
met_data5=g5.GetMetadata()
#print(met_data)
```
%% Cell type:code id: tags:
``` python
met_data['RANGEBEGINNINGDATE']
```
%%%% Output: execute_result
'2017-05-17'
%% Cell type:code id: tags:
``` python
met_data1['RANGEBEGINNINGDATE']
```
%%%% Output: execute_result
'2016-02-10'
%% Cell type:code id: tags:
``` python
met_data2['RANGEBEGINNINGDATE']
```
%%%% Output: execute_result
'2016-08-04'
%% Cell type:code id: tags:
``` python
## Assesing the scale factor for LST tile:
fpar_sf = np.float(met_data['scale_factor']) ## scale factor for photosynthetically avtive radiation
lai_sf= np.float(met_data4['scale_factor']) # scale factor for leaf area index
```
%% Cell type:markdown id: tags:
## reading lat, long
%% Cell type:code id: tags:
``` python
geo_data= g.GetGeoTransform()
print(geo_data)
print(g.RasterYSize)
```
%%%% Output: stream
(121.85119341501115, 0.005682448352416348, 0.0, -9.999999999104968, 0.0, -0.005682448352416348)
1760
%% Cell type:code id: tags:
``` python
x_UL = geo_data[0]
x_UR = geo_data[0] + geo_data[1] * g.RasterXSize
xcoor = np.arange(x_UL, x_UR, geo_data[1]).tolist()
#print(xcoor)
```
%% Cell type:code id: tags:
``` python
y_UL = geo_data[3]
y_UR = geo_data[3] + geo_data[5] * g.RasterYSize
ycoor = np.arange(y_UL, y_UR, geo_data[5]).tolist()
```
%% Cell type:markdown id: tags:
## reading band (FPAR):
%% Cell type:code id: tags:
``` python
## reading raster files :
band = g.GetRasterBand(1)
fpar = band.ReadAsArray().astype(np.float)
fpar
```
%%%% Output: execute_result
array([[254., 254., 254., ..., 255., 255., 255.],
[255., 254., 254., ..., 255., 255., 255.],
[255., 254., 254., ..., 255., 255., 255.],
...,
[255., 255., 255., ..., 32., 255., 255.],
[255., 255., 255., ..., 29., 29., 255.],
[255., 255., 255., ..., 29., 29., 28.]])
%% Cell type:code id: tags:
``` python
### check the arrangement of fpar array
fpar.shape
```
%%%% Output: execute_result
(1760, 2902)
%% Cell type:code id: tags:
``` python
fpar[527][298]
```
%%%% Output: execute_result
254.0
%% Cell type:code id: tags:
``` python
def closest(fpar, k):
fpar= np.asarray(fpar)
idx=(np.abs(fpar - k)).argmin()
return [fpar[idx],idx]
#xcoor.index(-96.84, )
```
%% Cell type:code id: tags:
``` python
closest(xcoor,131.1523) ## x is longitute -12.4943, 131.1523
```
%%%% Output: execute_result
[131.1533613679173, 1637]
%% Cell type:code id: tags:
``` python
closest(ycoor,-12.4943) ## y is latitude
```
%%%% Output: execute_result
[-12.494594825815906, 439]
%% Cell type:markdown id: tags:
### reading values @ (lat, long):
%% Cell type:code id: tags:
``` python
## creating dataframe by extracting variables
fpar_var = pd.DataFrame(columns=["fpar", "fpar_qc","fpar_lai_qc","fpar_stdev", "lai500","lai_stdev", "start_date"]) #"strt_date1"
for i in range(1,len(fpar500m)):
fpar=gdal.Open(fpar500m[i])
met_data=fpar.GetMetadata()
strt_date=met_data['RANGEBEGINNINGDATE'] ### getting date of measurement
fparqc=gdal.Open(fpar_qc[i])
met_data1=fparqc.GetMetadata()
fpar_lai=gdal.Open(fpar_lai_qc[i])
met_data2=fpar_lai.GetMetadata()
fpar_stdv=gdal.Open(fpar_stddev[i])
met_data3=fpar_stdv.GetMetadata()
lai=gdal.Open(lai500m[i])
met_data4=lai.GetMetadata()
lai_stdv=gdal.Open(lai_stdev[i])
met_data5=lai_stdv.GetMetadata()
#####
geo_fpar= fpar.GetGeoTransform()
band = fpar.GetRasterBand(1)
fpar_val = band.ReadAsArray().astype(np.float)
fpar_data=fpar_val[439][1637]
####
geo_fparqc= fparqc.GetGeoTransform()
band = fparqc.GetRasterBand(1)
qc_val = band.ReadAsArray().astype(np.float)
qc_data=qc_val[439][1637]
###
geo_laiqc= fpar_lai.GetGeoTransform()
band =fpar_lai.GetRasterBand(1)
laiqc_val = band.ReadAsArray().astype(np.float)
laiqc_data=laiqc_val[439][1637]
###
geo_fparstdvt=fpar_stdv .GetGeoTransform()
band = fpar_stdv.GetRasterBand(1)
fparstdv_val = band.ReadAsArray().astype(np.float)
fparstdv_data=fparstdv_val[439][1637]
geo_lai=lai.GetGeoTransform()
band = lai.GetRasterBand(1)
lai_val = band.ReadAsArray().astype(np.float)
lai_data=lai_val[439][1637]
geo_laistdv=lai_stdv.GetGeoTransform()
band = lai_stdv.GetRasterBand(1)
laistdv_val = band.ReadAsArray().astype(np.float)
laistdv_data=laistdv_val[439][1637]
### Appending the data in pandas series:
fpar_var.loc[i] = [fpar_data * fpar_sf,qc_data,laiqc_data, fparstdv_data,lai_data*lai_sf,laistdv_data,strt_date]
```
%% Cell type:code id: tags:
``` python
fpar_var
```
%%%% Output: execute_result
fpar fpar_qc fpar_lai_qc fpar_stdev lai500 lai_stdev start_date
1 0.60 128.0 16.0 4.0 0.04 4.0 2017-05-17
2 0.58 136.0 0.0 3.0 0.03 3.0 2016-06-17
3 0.52 136.0 8.0 4.0 0.04 4.0 2018-01-25
4 0.60 128.0 8.0 4.0 0.04 4.0 2018-03-30
5 0.67 136.0 0.0 7.0 0.07 7.0 2016-02-10
.. ... ... ... ... ... ... ...
131 0.55 160.0 0.0 4.0 0.04 4.0 2018-01-09
132 0.49 128.0 0.0 6.0 0.06 6.0 2017-07-28
133 0.46 136.0 0.0 4.0 0.04 4.0 2017-09-14
134 0.65 136.0 0.0 5.0 0.05 5.0 2016-05-16
135 0.70 128.0 0.0 4.0 0.04 4.0 2017-03-14
[135 rows x 7 columns]
%% Cell type:markdown id: tags:
### creating index fpar dataframe:
%% Cell type:code id: tags:
``` python
Df=fpar_var.copy()
Df.index=Df.start_date
```
%% Cell type:markdown id: tags:
### timestamp:
%% Cell type:code id: tags:
``` python
Df['Year'] = pd.DatetimeIndex(Df['start_date']).year
Df['Month'] = pd. DatetimeIndex(Df['start_date']).month
Df['Day'] = pd.DatetimeIndex(Df['start_date']).day
```
%% Cell type:code id: tags:
``` python
Df['timestamp']= pd.to_datetime(Df[['Year' ,'Month','Day']])
Df_sort=Df.sort_values(by='timestamp')
```
%% Cell type:code id: tags:
``` python
Df_sort.index=Df_sort.timestamp
```
%% Cell type:code id: tags:
``` python
df=Df_sort.copy()
#[Df_sort.index.year==2018]
plt.figure(figsize=(20,6))
plt.plot(df.index,df.fpar, color='green')
plt.xticks(rotation=45)
plt.xlabel('Timestamp', ha='center',fontsize=20)
plt.ylabel('FPAR', labelpad=10, va='center',fontsize=20)
#plt.legend(['Upwelling','Downwelling'])
plottitle = 'Howard Spring FPAR derived from MOD15A2H'
fname = 'Howar_spr longw'
plt.title(plottitle)
plt.grid()
```
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
### converting the dATA TO TXT
Df_sort.to_csv('/home/gitanjalithakur/Documents/Aerodynamic_conductance/lst-retrival-from-fluxnet-data/fpar_csv/how_spr_fpar.csv')
```
%% Cell type:code id: tags:
``` python
```
......
numpy
pandas
GDAL==2.2.3
pyModis
\ No newline at end of file
pyModis
matplotlib
datetime
Path
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment