ComputeInterventions.ipynb 11.1 KB
Newer Older
Christina Heinze-Deml's avatar
Christina Heinze-Deml committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Compute Interventions\n",
    "\n",
    "by Jonas Peters, Niklas Pfister, 01.12.2018\n",
    "\n",
    "This notebook is intended to give you some insight on how to compute intervention distributions. We will have a look at a few examples.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "library(igraph) #comment out this line if you cannot install igraph \n",
    "library(CondIndTests) \n",
    "library(dHSIC)\n",
    "source(\"../utils.R\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Given the observational distribution and the graph, we can now compute interventional distributions. As an example, let us focus on the intervention \n",
    "$$\n",
    "do(X:= 3).\n",
    "$$\n",
    "This intervention distribution can be computed using the adjustment formula. It says\n",
    "(in case of discrete variables, the integral is replaced by a sum)\n",
    "\\begin{equation} \\tag{1}\n",
    "p^{do(X:=x)} (y) = \\int_{\\mathbf{z}} p(y|x, \\mathbf{z}) p(\\mathbf{z}) \\, d\\mathbf{z},\n",
    "\\end{equation}\n",
    "where $\\mathbf{Z}$ is a \"valid adjustment set\". Usually, there are several valid adjustment sets. One set $\\mathbf{Z}$ that always works, is the set of parents of $X$, i.e., $\\mathbf{Z} = \\mathbf{PA}_X$.\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will apply formula (1) to a (famous) kidney stone data set. Let us assume that the causal structure looks as follows\n",
    "\\begin{align}\n",
    "    &\\phantom{0}\\\\\n",
    "    &\\begin{array}{cc}\n",
    "         &S                 & \\\\\n",
    "        \\phantom{abcdefgh}\\swarrow &            & \\searrow\\phantom{abcdefgh}\\\\\n",
    "                            &               & \\\\\n",
    "         T                  & \\longrightarrow & R\\\\\n",
    "        \\end{array}\\\\\n",
    "      &\\phantom{0}\n",
    "\\end{align}\n",
    "where $T$ is treatment, $S$ is size of the stone, and $R$ is recovery. The following table shows the recovery rates\n",
    "\n",
    "$$\n",
    "\\begin{array}{r|c|c}\n",
    "& \\text{Treatment A} & \\text{Treatment B}\\\\\\hline\n",
    "\\text{Small Stones } { (\\frac{357}{700} = 0.51)}& \\frac{81}{87} = {0.93} & \\frac{234}{270} = 0.87\\\\\\hline\n",
    "\\text{Large Stones } { (\\frac{343}{700} = 0.49)} & \\frac{192}{263} = {0.73} & \\frac{55}{80} = 0.69\\\\\\hline\n",
    "& \\frac{273}{350} = 0.78 & \\frac{289}{350} = {0.83}\n",
    "\\end{array}\n",
    "$$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Exercise 1: \n",
    "Compute \n",
    "$$\n",
    "P^{do(T:=A)} (R = 1)\n",
    "$$\n",
    "and\n",
    "$$\n",
    "P^{do(T:=B)} (R = 1).\n",
    "$$\n",
    "Which treatment is better?"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Solution 1: "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### End of Solution 1"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For the remainder of this notebook we will have a look at an artificial example. We first load some data. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "load(file = \"../data/ComputeInterventionsData1.Rdata\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This data has been generated from an SEM with the following graph structure."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "Adj <- rbind(c(0,0,0,1,0,0,0,0,0), c(0,0,1,1,0,0,0,0,0), c(0,0,0,0,0,0,0,1,0), c(0,0,0,0,1,1,0,0,0), \n",
    "           c(0,0,0,0,0,0,0,0,0), c(0,0,0,0,0,0,1,1,0), c(0,0,0,0,0,0,0,0,0), c(0,0,0,0,0,0,0,0,1), \n",
    "           c(0,0,0,0,0,0,0,0,0))\n",
    "set.seed(1)\n",
    "plotGraphfromAdj(Adj, labels = c(\"C\", \"A\", \"K\", \"X\", \"F\", \"D\", \"G\", \"Y\", \"H\")) \n",
    "#comment out the above line if you cannot install igraph\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let us say, we are interested in the causal effect from $X$ to $Y$, i.e., in the intervention distribution $p^{do(X:=x)} (y)$.\n",
    "\n",
    "Computing equation (1) is often difficult, even if we are given full knowledge of the observational distribution, that is, if we are given the density $p$ (especially in the case of continuous variables and high-dimensional $\\mathbf{Z}$). In this example, we are not even given $p$ but only a sample from $p$ and estimating conditional distributions is a hard statistical problem. Fortunately, the joint distribution $p$ is Gaussian and things become easier. Equation (1) then implies\n",
    "\\begin{equation} \\tag{2}\n",
    "\\mathbf{E}^{do(X:=x)} [Y] = \\alpha x,\n",
    "\\end{equation}\n",
    "where \n",
    "$\\alpha$ is sometimes called the causal effect from $X$ to $Y$ and is determined by \n",
    "$$\n",
    "\\mathbf{E} [Y\\,| \\,X=x, \\mathbf{Z} = \\mathbf{z}] = \\alpha x + \\beta^t \\mathbf{z}\n",
    "$$\n",
    "In practice, we can \n",
    "obtain $\\alpha$ as the regression coefficient, when linearly regressing $Y$ on $X$ and $\\mathbf{Z}$.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Exercise 2: \n",
    "1. Estimate\n",
    "$\n",
    "\\mathbf{E}^{do(X:=3)} [Y] \n",
    "$\n",
    "from data.loaded.\n",
    "\n",
    "2. \n",
    "We have regressed \n",
    "$Y$ on $X$ *and* $\\mathbf{Z}$ --- thus the name \"adjusting for $\\mathbf{Z}$\".\n",
    "Do you see what goes wrong when we try to estimate the causal effect $\\alpha$ \n",
    "by regressing $Y$ on $X$ without adjusting for $\\mathbf{Z}$?"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Solution 2: "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### End of Solution 2 "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Whether or not a set is a valid adjustment set can be answered using the notion of d-separation (e.g., the set should block the path $X \\leftarrow A \\rightarrow K \\rightarrow Y$). Since d-separation is an important concept, we would like to revise it here. \n",
    "\n",
    "In brief, given a DAG , the (disjoint) sets $Q$ and $R$ are d-separated by a set $S$ if all paths between $Q$ and $R$ are blocked by $S$. A path $i_1, i_2, \\ldots, i_m$ is blocked by $S$ if there is a node $i_k$ on the path ($1 < k < m$) such that one of the following conditions hold:\n",
    "* ${i_k} \\in {S}$ and\n",
    "\\begin{align*}\n",
    "&{i_{k-1}} \\rightarrow {i_k} \\rightarrow {i_{k+1}}\\\\\n",
    "\\text{or }\\;&{i_{k-1}} \\leftarrow {i_k} \\leftarrow {i_{k+1}}\\\\\n",
    "\\text{or }\\;&{i_{k-1}} \\leftarrow {i_k} \\rightarrow {i_{k+1}}\n",
    "\\end{align*}\n",
    "* neither ${i_k}$ nor any of its descendants is in ${S}$ and\n",
    "$$\n",
    "{i_{k-1}} \\rightarrow {i_k} \\leftarrow {i_{k+1}}.\n",
    "$$ \n",
    "\n",
    "The data that we have loaded comes from an SEM. One can show that the distribution is Markov with respect to the corresponding graph. This means that d-separation implies conditional independence. We will try to verify this with a few examples. "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Exercise 3: \n",
    "Write down two d-separation statements that hold and two that do not hold. Test for conditional and unconditional independence using the functions ```CondIndTest``` from package ```CondIndTests``` and ```dhsic.test``` from package ```dHSIC```, respectively. Use the data in data.loaded; you can access variables using ```data.loaded[,\"X\"]```, for example. Do you find the correct conditional independences? Note that conditional independence testing is a difficult statistical problem, especially if the conditioning set is large."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Solution 3: "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### End of Solution 3"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If we are given the full SEM (this will often not be the case), there is a different strategy for computing causal effects. We will use this to validate our estimate from Exercise 2. In fact, the data that we have provided above, was generated by the following SEM:\n",
    "\\begin{align*} \n",
    "C &:= N_C\\\\\n",
    "A &:=  0.8 N_A\\\\\n",
    "K &:=  A + 0.1 N_K\\\\\n",
    "X &:=  C - 2 A + 0.2 N_X\\\\\n",
    "F &:=  3 X + 0.8 N_F\\\\\n",
    "D &:=  -2 X + 0.5 N_D\\\\\n",
    "G &:=  D + 0.5 N_G\\\\\n",
    "Y &:=  2 K - D + 0.2 N_Y\\\\\n",
    "H &:=  0.5 Y + 0.1 N_H\n",
    "\\end{align*}\n",
    "with all $N$'s being jointly independent and having a standard normal distribution.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "set.seed(1); n <- 200\n",
    "C <- rnorm(n)\n",
    "A <- 0.8*rnorm(n)\n",
    "K <- A + 0.1*rnorm(n)\n",
    "X <- C - 2*A + 0.2*rnorm(n)\n",
    "F <- 3*X + 0.8*rnorm(n)\n",
    "D <- -2*X + 0.5*rnorm(n)\n",
    "G <- D + 0.5*rnorm(n)\n",
    "Y <- 2*K - D + 0.2*rnorm(n)\n",
    "H <- 0.5*Y + 0.1*rnorm(n)\n",
    "data.check <- cbind(C, A, K, X, F, D, G, Y, H)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Indeed, this yields the same data:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "head(data.loaded)\n",
    "head(data.check)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Exercise 4: \n",
    "1. Generate data from the intervened SEM $do(X:=3)$ and compare your findings with the estimate computed above. \n",
    "2. Look at the graph shown above and at the coefficients of the SEM. Compute $\\mathbf{E}^{do(X:=3)}[Y]$ using the path method. \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Solution 4: "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
   "source": [
    "### End of Solution 4 "
   ]
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "kernelspec": {
   "display_name": "R",
   "language": "R",
   "name": "ir"
  },
  "language_info": {
   "codemirror_mode": "r",
   "file_extension": ".r",
   "mimetype": "text/x-r-source",
   "name": "R",
   "pygments_lexer": "r",
   "version": "3.5.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}