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Course details

Lecturers:
Anthony DAVISON (EPFL),
Raphaël DE FONDEVILLE (Federal Statistical Office),
Thomas OPITZ (INRAE),
Hans WACKERNAGEL (MINES ParisTech)

Time schedule: from 9h to 12h30, 14h-17h30
(with lunch break from 12h30-14h)

Date Program subjects
Mon 14 March Introduction to extreme value statistics
Tue 15March Bivariate extremes: extremal dependence

Wed 16 March Multivariate extremes
Thu 17 March Spatial extremes
Fri 18 March Data science, machine learning and extreme value theory



Course details

Practicals: participants bring their own laptop and
will use dedicated packages in the R language
(free download at www.r-project.org).
Also needed: the RStudio Desktop
which is freely available at
www.rstudio.com

Web platform: Renku https://renkulab.io

Course location: Mines Paris PSL
Contacts: Hans WACKERNAGEL, Raphaël DE FONDEVILLE

hans.wackernagel@minesparis.psl.eu
raphael.defondeville@bfs.admin.ch

https://www.r-project.org/
https://www.rstudio.com
https://renkulab.io/
mailto:hans.wackernagel@minesparis.psl.eu
mailto:raphael.defondeville@bfs.admin.ch


Evaluation by project

Several space-time data sets:
Different subsets will be proposed to pairs of participants.

Study groups:
A list will be established and participants should form groups of two
that will hand out a common report.

Deadline for report:
Thursday 24 March 2022



Introduction

Climate extremes

IPCC 2001 definition:
an extreme weather event is an event that is rare within its statistical reference
distribution at a particular place.
Definitions of "rare" vary, but an extreme weather event would normally be as
rare or rarer than the 10th or 90th percentile.

Objective: estimate the probability of events that lie in
the tail of the distribution.
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Financial extremes
Example: Dow Jones index

Source: www.spiegel.de

On black monday 29 september 2008 the Dow Jones had its largest historical daily
drop of -777,65 points: -6.98%.



Financial extremes: DJI for last 30 years
Example: Dow Jones index



Motivation: extreme value analysis

Extreme value analysis
We need a rationale to compute the probability and level of events
within and beyond the range of past measurements.
Frequency and intensity of extremes
Return period:
- how likely is the advent of an unusual weather event of a given type within the
next month/year/decade/century?
Return level:

- what level could the event reach as compared to past events?
Need to assess:

Ecological consequences
Socio-economic consequences



Rationale of extreme value statistics

Simplest case:
i.i.d. random variables X1, ...,Xn following a distribution F .
Require accurate inferences on tail of F .

Key issues:
there are very few observations in the tail of the distribution;
estimates are often required beyond the largest observed data value;
standard density estimation techniques fit well where the data have greatest
density, but tend to be biased in estimating tail probabilities.

Lack of physical or empirical basis for extrapolation leads to
the extreme value paradigm:

Use tail models that are based on
asymptotically-motivated distributions.



Software: R
Main site: http://www.r-project.org

A powerful high-level language for statistical exploration, analysis and modeling
of large data sets.
Simple incorporation of C, Python, Fortran code.
Available for Linux, Windows and Mac systems.
Public domain software with intense development activity
A large community and a great many contributed packages:
e.g. have a look at the Task View Extreme Value Analysis
on the CRAN site https://cran.r-project.org/

http://www.r-project.org
https://cran.r-project.org/


Aims of the Course

Introduction to statistical modelling of extreme values
Discussion of applications in climate, environmental science
and insurance/finance
Introduction to R and a few extreme value analysis packages
(ismev, evir,...)
Some computer practice on standard data sets



References

1 The main reference for this course is the introductory text by Stuart COLES [3], which has many
application examples using data sets from climate, environmental science and finance. They can
easily be recomputed with the R package ismev.

2 The book by BEIRLANT et al. is good as a second reading [2] and contains also application examples
from environmental science, insurance and finance (there is a Web page providing the data sets).

3 The book by EMBRECHTS et al. is focussed on insurance and finance applications.[6]



Exploratory Data Analysis

We review a few tools available in R (www.r-project.org) for generating statistical
graphics using the package lattice. We load lattice and the package latticeExtra
available on CRAN:

install.packages(latticeExtra)
require(lattice)
require(latticeExtra)
Windspeed=scan("zaventem.txt") # load Zaventem windspeeds

MINES Paris PSL Athens Network Extreme Value Statistics March 14–18, 2022 13 / 155

http://athensnetwork.eu/athens-programme.html


Daily maximal windspeed
Zaventem airport (1985-1992)

Empirical distribution
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Dot plot and box plot
Daily maximal windspeed: Zaventem airport (1985-1992)

Ordered values along a line:
Dot plot

Windspeed (km/h)
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Five numbers that characterize the distribution:
Min. 1st Quart. Median 3rd Quart. Max.
0.5 26.0 35.0 50.0 139.0

Box and whiskers plot

Windspeed (km/h)
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Normal distribution and QQ-plot
Daily maximal windspeed: Zaventem airport (1985-1992)
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Exponential distribution and QQ-plot for tail
Daily maximal windspeed: Zaventem airport (1985-1992)
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Exploratory Extreme Value Analysis
(following the book by BEIRLANT et al.)
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Introduction

Statistical Model

Model: samples are drawn from
independent identically distributed random variables
(iid model):

X1 . . . Xn iid random variables
↓ ↓

x1 . . . xn samples

We consider ordered samples (drawn from ordered RV):

X1 ≤ X2 ≤ X3 ≤ ·· · ≤ Xn
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Distribution function

The distribution function:
F (x) = P(X ≤ x)

Its inverse is the quantile function:

Q(p) = inf{x : F (x)≥ p}

i.e. the smallest x for which F (x)≥ p.



Example: maximal wind speed and wind shed
Albuquerque (USA)

Direct problem: a shed breaks down if the wind speed is larger than 30 miles per
hour. We are interested in the probability of that event,
p = P(X > 30).

To solve it, we compute the empirical distribution function:

F̂n(x) =
i
n ifx ∈ [xi ,xi+1)



Albuquerque daily maximal wind speeds
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Wind shed: breakdown probability
Albuquerque daily max windspeeds

Daily fastest-mile wind speed data:

p̂ = 1− F̂n(30) = 0.18

i.e. there is one chance out of five that it breaks down.
The shed will break down one day out of five in a city like Albuquerque.



Wind shed breakdown
Albuquerque daily max windspeeds

The shed should resist strong winds, perhaps the strongest wind that might occur.
Problem: winds may occur that are stronger than what was ever measured.
Modeling problem: how can we compute the probability for an event x for x > xmax ,

i.e. when x is larger than the largest ever measured value?
The empirical distribution function is of no help as p̂ = 0 for x > xmax . This
corresponds actually to the narrow-minded statement: “it was never measured so far,
so it is impossible”.

We need a mathematical model for the distribution of wind-speed maxima, i.e. we
need extreme value theory.



Wind shed breakdown
Albuquerque daily max windspeeds

The shed should resist strong winds, perhaps the strongest wind that might occur.
Problem: winds may occur that are stronger than what was ever measured.
Modeling problem: how can we compute the probability for an event x for x > xmax ,

i.e. when x is larger than the largest ever measured value?
The empirical distribution function is of no help as p̂ = 0 for x > xmax . This
corresponds actually to the narrow-minded statement: “it was never measured so far,
so it is impossible”.

We need a mathematical model for the distribution of wind-speed maxima, i.e. we
need extreme value theory.



QQ-plots

Quantile-Quantile plots
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Distribution F and its inverse Q

Direct problem: what is the probability p = 1−F (x) of a wind with speed x?
Inverse problem: which wind speed x = Q(p) corresponds to a given p?



Model: exponential distribution

Exponential distribution: plays an important role
in extreme value theory.

Standard exponential distribution:

F (x) = 1− exp(−λx) x > 0,λ > 0

Survival function:
1−F (x)

Exponential survival function:

exp(−λx)



Quantile function
Exponential distribution

The quantile function for the exponential distribution is:

Qλ (p) =− 1
λ

log(1−p) 0 < p < 1

Linear relation with standard exponential quantiles Q1:

Qλ (p) =
1
λ

Q1(p) 0 < p < 1



Quantile-Quantile plot
Exponential Quantiles against Empirical Quantiles

Given a set of ordered samples x1, . . . ,xn the empirical quantiles are:

Q̂n(p) = inf {x : F̂n(x)≥ p}

In the QQ-plot they are plotted against exponential quantiles.
Abscissa: the standard exponential quantiles − log(1−p)

Ordinate: the empirical quantiles Q̂n(p)



QQ-plot: estimation of extreme quantiles



QQ-plot: exponential model

We expect a straight line if the exponential model provides a plausible fit.
For a straight line pattern, the slope of the fitted straight line is an estimate of
λ−1as:

Qλ (p) =− 1
λ

log(1−p)

with p ∈ { 1
n+1 ,

2
n+1 , . . . ,

n
n+1}.

The slope λ−1 can be estimated by least-squares.



Exponential QQ-plot: threshold t

If data is only available above a threshold t , we handle the conditional distribution of
X (given X > t):

P(X > x | X > t) =
P(X > x)

P(X > t)
= exp(−λ (x − t)) x > t

and the corresponding quantile function is:

Qλ ,t(p) = t− 1
λ

log(1−p) 0 < p < 1

where t is the intercept of the straight line



Zaventem: maximal wind speeds

Conditional exponential distribution
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Pareto QQ-plot

Distribution F (x) Abscissa Ordinate
Exponential 1− exp(−λx) x>0,λ>0 − log(1−pi ,n) xi ,n

Pareto 1−x−α
x>1,α>0 − log(1−pi ,n) logxi ,n

Pareto QQ-plot: obtained by log-transforming
the ordinate of an exponential QQ-plot.



Norwegian fire insurance: max. claim sizes
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Maximal claim sizes: box plots
Norwegian fire insurance

Claim size (mio NOK)
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Claim sizes for 1976
Norwegian fire insurance

Claim size (mio NOK)
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Claims (1976): exponential and Pareto QQ-plots
Norwegian fire insurance

Quantiles of exponential distribution
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Excess plots

Excess plots
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Mean-excess function: motivation

Conditioning of a random variable X on the event X > t is important in many
applications.

Example

Excess-of-loss treaty with a retention t in reinsurance.
The reinsurer has to pay a random amount X − t ,
but only if X > t .
To decide on the priority level t through simulation,
the expected amount to be paid out per client
for a given level t has to be calculated.
The net premium principle depends on
the mean claim size E [X ].
For the overshoot we consider: E [X − t | X > t ].



Mean-excess function

The mean-excess function (or mean residual life function) is:

e(t) = E [X − t | X > t ]



Reference: the exponential model

The mean excess function for the exponential distribution is constant:

e(t) =
1
λ

for all t > 0

Interpretation of excess plots
When the tail is

HTE: heavier than exponential, the excess function increases,
LTE: lighter than exponential, the excess function decreases.



The exponential model: a reference



Empirical mean-excess function

The empirical mean-excess function is:

ên(t) =

n
∑
i=1

xi 1xi>t

n
∑
i=1

1xi>t

− t

where the test function 1xi>t equals 1 for xi > t , and zero otherwise.



Excess plots

Often ên(t) is plotted at the values t = xn−k for k = 1, . . . ,n−1 which yields:

ek =
1
k

k
∑
j=1

xn−j+1−xn−k

Excess plot: ek is usually plotted against xn−k .
(Some authors plot it against k)

Interpretation of excess plots
Excess plot ek vs xn−k :
examine the behavior for increasing values xn−k .
(When plotting ek vs k:
look at the behavior for decreasing k)



Zaventem: maximal wind speeds > 82km/h
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Norwegian fire insurance
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Exponential QQ-plots and mean-excess plots



Meuse river: maximal annual discharges
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Exponential QQ-plot
Meuse river: maximal annual discharges

Quantiles of exponential distribution
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Excess plot
Meuse river: maximal annual discharges
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Statistical modeling of extreme values
(following the book by Stuart COLES and slides by Stuart COLES & Anthony DAVISON)

“Extreme value theory is unique as a statistical technique
in that it develops techniques and models for describing
the unusual rather than the usual.”
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Basics of extreme value theory

Suppose we have 100 independent observations following a distribution F :
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We wish to estimate the right tail of F . We need to consider the following paradigm. . .



The extreme value paradigm

There are only few observations in the right tail.
Estimates are often required beyond the largest observed value.
Standard density estimation techniques fit well where the data have the greatest
density, but may be severely biased in estimating the tail probabilities.

The extreme value paradigm consists in modeling the tails using asymptotically
motivated distributions.

It will not be necessary to know F , the distribution of the complete data set.



Applications

Historically there have been two main application areas of extreme value theory:
Environmental:
- sea-level,
- wind speeds,
- river flow. . .

Reliability modeling:
- weakest-link type models.

Nowadays there are a great variety:
Financial modeling, insurance modeling, telecommunications,. . .



History

1920’s: Foundations of asymptotic argument by Fisher and Tippet.
1940’s: Unification and extension of asymptotic theory by Gnedenko and later
by von Mises.
1950’s: use of asymptotic distributions for statistical modeling by Gumbel and
Jenkinson.
1970’s: classic limit laws generalized by Pickands.
1980’s: Leadbetter and others extend theory to stationary processes.
1990’s: Multivariate and other techniques explored as a means to improve
inference relying on covariates.
Currently: geostatistical models for spatial extreme values.
Main conference:
Extreme Value Analysis 2021 (28 June - 02 July: online)

https://www.maths.ed.ac.uk/school-of-mathematics/eva-2021


EV Theory

Probabilistic framework

Let X1,X2, . . . ,Xn be a sequence of independent identically-distributed (iid) random
variables with distribution function F . Let:

Mn = max(X1,X2, . . . ,Xn)

Then the distribution function of the maximum Mn is:

P(Mn ≤ x) = P(X1 ≤ x ,X2 ≤ x , . . . ,Xn ≤ x)

= P(X1 ≤ x)P(X2 ≤ x) . . . P(Xn ≤ x)

= (F (x))n

But: F is unknown (and we do not wish to rely on it).

Instead, the distribution of Mn is rather approximated by
limit distributions as n→ ∞.

Question: what limit distributions can arise ?
With F (x) < 1, then (F (x))n −→ 0 as n −→ ∞. Quite trivial, so far!
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The classical limit laws

Now, recall the Central Limit Theorem, for iid random Xn:

P
(

Xn−µn
σn

≤ x
)
→N (0,1) asn→ ∞

where µn = µ and σn = σ/
√

n act as normative coefficients.

In the same way we look for limits of

(Mn−bn)

an

for suitable sequences of an and bn, so that
the limit is a non-degenerate distribution.



The classical limit laws

Now, recall the Central Limit Theorem, for iid random Xn:

P
(

Xn−µn
σn

≤ x
)
→N (0,1) asn→ ∞

where µn = µ and σn = σ/
√

n act as normative coefficients.

In the same way we look for limits of

(Mn−bn)

an

for suitable sequences of an and bn, so that
the limit is a non-degenerate distribution.



Equivalence class of distributions

Definition

The distributions F and F ∗ are of the same type, if there are constants a and b such
that F ∗(ax + b) = F (x) for all x .

Example

N (µ1,σ1) and N (µ2,σ2) are of the same type.



Extremal Types Theorem

Theorem
If there exist sequences of constants an > 0 and bn such that:

P
(

Mn−bn
an

≤ x
)
→ G(x) asn→ ∞

for some non-degenerate distribution G , then G is of the same type as one of the
following distributions:

1 Gumbel: G(x) = exp(−exp(−x)) for −∞ < x < ∞

2 Fréchet:

G(x) =

{
0 x ≤ 0
exp(−x−α ) x > 0,α > 0

3 Weibull:

G(x) =

{
exp(−(−x)α ) x < 0, α > 0
1 x ≥ 0



Example: exponential distribution
Suitable normative coefficients

Take the standard exponential distribution F (x) = 1− exp(−x).
Then F (x)n = (1− e−x )n.
With an = 1 and bn = logn,

P(Mn− logn ≤ x) = P(Mn ≤ x + logn) = F (x + logn)n

Then

F (x + logn)n = (1− e−x−logn)n

= (1− 1
n e−x )n

→ exp(−exp(−x)) asn→ ∞

so that the limiting distribution is the Gumbel distribution.
We say that the exponential distribution is in
the domain of attraction of the Gumbel distribution.
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Example: normal distribution
Suitable normative coefficients

In the case of the standard normal distribution and with coefficicients

an = (2 log n)−1/2

bn = (2 log n)1/2− (2 logn)−1/2 (log log n + log4π)

2

the normalized maximum (Mn−bn)/an of n independent normal variables again
converges to a Gumbel distribution.



Domains of attraction
A few examples

Gumbel domain: exponential, normal, lognormal, logistic, gamma distributions,. . .

Fréchet domain: Pareto, Cauchy, t, F distributions,. . .

Weibull domain: uniform, beta, Burr distributions,. . .



Using the limit law in practice

For a given n, regarded as large enough, the limit law may be used as an
approximation:

P
(

Mn−b
a ≤ x

)
≈ G(x) for somea > 0, b.

Equivalently,

P(Mn ≤ x) ≈ G
(

x −b
a

)
= G∗(x)

where G∗ is of the same type as G .

Thus the family of extreme value distributions may be fitted directly to a series
of observations of Mn.



Generalized Extreme Value distribution

The extremal types theorem distinguishes three families of distributions.
The extreme value distribution families can be united in one expression:

G(x) = exp

(
−
[
1 + ξ

(
x −µ

σ

)]−1/ξ

+

)

defined on {x : 1 + ξ (x −µ)/σ > 0}.

We denote: x+ = max(x ,0)

µ is the location parameter,
σ is the scale parameter,
ξ is the shape parameter,

determining the rate of decay in the tail.

The Generalized Extreme Value (GEV) distribution is denoted G (µ,σ ,ξ ).



Shape parameter

The GEV distribution G (µ,σ ,ξ ) splits up into the three families:
ξ > 0 the Fréchet family

characterized by a heavy upper tail,
ξ = 0 the Gumbel family

with an exponential upper tail,
ξ < 0 the Weibull family

whose tail has a finite upper limit.
Actually the relation to the extremal types theorem is through ξ = 1/α .
The GEV distribution is actually not defined for ξ = 0.
The subset of the GEV family with ξ = 0 is interpreted as the limit obtained for
ξ → 0, leading to the Gumbel family.



Return levels

The quantiles of the GEV distribution are computed as:

xp =

{
µ−σ log[− log(1−p)] forξ = 0,
µ− σ

ξ
(1− [− log(1−p)]−ξ ) forξ 6= 0.

where G(xp) = 1−p.
In extreme value terminology,

return period :
mean waiting time between two extreme events,

return level :
the level xp associated with a return period T = 1/p.

Example

A typical application is to fit the GEV to annual maxima.
We wish to compute the return level xp that is expected to be exceeded
on average once every T years.



GEV return level plot: different shapes ξ
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Meuse discharge: from 100 to 1000-year return period
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Max-stable distributions

Insight is gained using the concept of max-stability.

Definition
A distribution G is said to be max-stable, if for any k

Gk(akx + bk) = G(x)

for suitable constants ak and bk .
Taking powers of G results only in a change of location and scale.

The connection with extremes is that :
a distribution is max-stable, if and only if it is a GEV distribution.



Domains of Attraction

Given a distribution function F , how can we determine suitable sequences an and
bn, and how can we know what limit G will occur?

For sufficiently smooth distributions, define

h(x) =
1−F (x)

f (x)

and let

bn = F−1
(

1− 1
n

)
an = h(bn) ξ = lim

x→∞
h′(x)

then the limit distribution of (Mn−bn)/an is

exp(−e−x ) if ξ = 0,

exp
(
−[1 + ξx ]

−1/ξ

+

)
if ξ 6= 0.



Domain of attraction: examples

Example

For the exponential distribution F (x) = 1− exp(−x),
we have h(x) = 1.

Thus ξ = limx→∞ h′(x) = 0 : this confirms the Gumbel domain.

Example

Suppose 1−F (x)∼ c x−α as x → ∞ for constants c , α > 0.

This family includes the Pareto, Cauchy, t and F distributions.

Then
f (x)∼ αc x−α−1 h(x)∼ α

−1x , h′(x)∼ α
−1

So ξ = α−1 : so we are in the Fréchet domain of attraction.
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Block maxima

Block maxima approach

In classical EVA applications,
typically a sequence of annual maxima is analyzed:

the sequence is partitioned into blocks (=years) and
only the maximal value for each block (=year) is retained.

All other data are ignored.

The aim is to make inferences on the GEV parameters µ , σ , ξ .
Inference methods include:

graphical techniques,
moment-based estimators,
likelihood-based techniques,
Bayesian techniques.
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Maximum likelihood

For theoretical and practical purposes, likelihood-based techniques are generally
preferable. They are implemented in the R package ismev.

However, there is a potential difficulty that the endpoint of the distribution is a
function of the parameters, so usual regularity conditions do not hold. Smith (1985)
established that:

When ξ >−0.5, maximum likelihood estimators are completely regular;
When −1 < ξ <−0.5, maximum likelihood estimators exist, but are
non-regular;
When ξ <−1 maximum likelihood estimators do not exist.

In most environmental problems ξ >−1, so maximum likelihood works fine.



Modeling procedure

Specification of log-likelihood function:

l(µ,σ ,ξ ) =
k
∑
i=1

(
− logσ −

(
1+ 1

ξ

)
log

[
1+ξ

(
xi −µ

σ

)]
−
[
1+ξ

(
xi −µ

σ

)]−1/ξ
)

Numerical maximization of log-likelihood.
Calculation of standard errors from inverse of observed information matrix (also
obtained numerically).
Profile likelihood functions of parameters.
Diagnostic checks: probability plots, quantile plots, return level plots.
Calculation of confidence intervals for return levels.



Profile likelihood function

The log-likelihood for a parameter θi can be written l(θi ,θ−i ), where θ−i is the vector
of all parameters excluding θi .
The profile likelihood is defined as

lp(θi ) = max
θ−i

l(θi ,θ−i )

For each value of θi the profile log-likelihood is the log-likelihood maximized for all
other components of the vector θ .

The profile likelihood plot shows the profile of the log-likelihood surface along the
axis θi .



Port Pirie sea levels (1923 to 1987)
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Port Pirie sea levels
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> summary(SeaLevel)
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.570 3.830 3.960 3.981 4.110 4.690



GEV fit

> data(portpirie)
> attach(portpirie)
> pirie.fit = gev.fit(SeaLevel)
# The negative logarithm of the likelihood
# evaluated at the maximum likelihood estimates.
$nllh [1] -4.339058
# mu sigma xi
$mle [1] 3.87474692 0.19804120 -0.05008773
# standard errors
$se [1] 0.02793211 0.02024610 0.09825633

# diagnostic plots
> gev.diag(pirie.fit)
# profile likelihood plot for xi
> gev.profxi(pirie.fit,-0.242,0.242)
# profile likelihood plot for return level
> gev.prof(pirie.fit,100,4.4,6.0)
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gev.diag(pirie.fit)
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Profile likelihood for ξ
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The 95% confidence interval for ξ =−.05 is: [-.22, .17].
Could be Gumbel!



Profile likelihood: 100-year return level
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The 95% confidence interval for 100-year level of 4.69 is: [4.5, 5.27]



Gumbel fit: less parameters!

> pirie.Gumfit = gum.fit(SeaLevel)
$nllh [1] -4.217682
# mu sigma
$mle [1] 3.8694426 0.1948867
# standard errors
$se [1] 0.02549356 0.01885190

A likelihood ratio test statistic for the reduction to Gumbel model suggests the
Gumbel is more adequate.



gum.diag(pirie.Gumfit)
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Threshold method
Motivation

Modeling only block maxima is a wasteful approach,
if other data besides the maxima are available within the blocks.
If an entire time series of, say, hourly or daily observations is available, then
better use is made of the data by avoiding altogether the procedure of blocking.



Threshold method: model

Let X1,X2, . . . be a sequence of iid RV with marginal distribution F .
We now regard as extreme events those of the Xi that exceed some high threshold u.

A description of the stochastic behavior of extreme events is provided by the
conditional probability:

P(X > u + y | X > u) =
1−F (u + y)

1−F (u)
with y > 0

In applications we do not wish to specify F .
We can rely on the fact that:

the distribution of threshold exceedances belongs to the generalized Pareto
family.



Generalized Pareto distribution

Let X1,X2, . . . be a sequence of iid RV with marginal distribution F and let

Mn = max(X1,X2, . . . ,Xn)

Supposing for large n that the Mn are approximately GEV(µ,σ ,ξ ) distributed, then
for large enough u
the distribution of X −u conditional on X > u
is approximately:

H(y) = 1−
(

1 +
ξy
σ̃

)−1/ξ

with {y : y > 0and(1 + ξy/σ̃) > 0}, where σ̃ = σ + ξ (u−µ).

The distributions H(y) form the generalized Pareto family.



Generalized Pareto distributions

Example. For the exponential distribution F (x) = 1− e−x for x > 0,

1−F (u + y)

1−F (u)
=

e−(u+y)

e−u = e−y for y > 0

is GPD with ξ = 0 and σ̃ = 1.

Example. For a Fréchet distribution F (x) = exp(−1/x) for x > 0,

1−F (u + y)

1−F (u)
=

1− exp[−(u + y)−1]

1− exp(−u−1)
∼
(

1 +
y
u

)−1
asu→ ∞, fory > 0

is GPD with ξ = 1 and σ̃ = u.

Example. For the uniform distribution F (x) = x for 0≤ x ≤ 1,

1−F (u + y)

1−F (u)
=

1− (u + y)

1−u = 1− y
1−u for 0≤ y ≤ 1−u

is GPD with ξ =−1 and σ̃ = 1−u.



Generalized Pareto distributions

Example. For the exponential distribution F (x) = 1− e−x for x > 0,

1−F (u + y)

1−F (u)
=

e−(u+y)

e−u = e−y for y > 0

is GPD with ξ = 0 and σ̃ = 1.

Example. For a Fréchet distribution F (x) = exp(−1/x) for x > 0,

1−F (u + y)

1−F (u)
=

1− exp[−(u + y)−1]

1− exp(−u−1)
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(

1 +
y
u

)−1
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Example. For the uniform distribution F (x) = x for 0≤ x ≤ 1,

1−F (u + y)

1−F (u)
=

1− (u + y)

1−u = 1− y
1−u for 0≤ y ≤ 1−u

is GPD with ξ =−1 and σ̃ = 1−u.



Generalized Pareto distributions

Example. For the exponential distribution F (x) = 1− e−x for x > 0,

1−F (u + y)

1−F (u)
=
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is GPD with ξ = 0 and σ̃ = 1.
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∼
(

1 +
y
u

)−1
asu→ ∞, fory > 0

is GPD with ξ = 1 and σ̃ = u.

Example. For the uniform distribution F (x) = x for 0≤ x ≤ 1,

1−F (u + y)

1−F (u)
=

1− (u + y)

1−u = 1− y
1−u for 0≤ y ≤ 1−u

is GPD with ξ =−1 and σ̃ = 1−u.



Threshold choice

The issue of threshold choice is analogous to that of block size in the block maxima
approach: a balance between bias and variance

Too low a threshold may violate the asymptotic basis of the model, leading to
bias.
Too high, it will generate few excesses for estimating the model, leading to high
variance.

Discussion. In some applications the threshold is prescribed by a convention.

Example

In the last IPCC report (2001) the following threshold for extremes was defined: 90th
(or 10th) percentile for hot (cold) extremes.
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Two methods for threshold choice

1 Exploratory technique: the mean excess plot.
2 Estimation of the model at a range of thresholds.

Once a threshold has been selected the parameters of the GPD are estimated by
maximum likelihood.
The algorithm should avoid numerical instabilities for ξ ≈ 0 and the evaluation has to
take place within allowable parameter space.



Threshold choice: 1st method

Mean excess plot



Return levels for Pareto models

Suppose that the exceedances of X over a threshold u are GPD(σ ,ξ ).

P(X > x | X > u) =

[
1 + ξ

(
x −u

σ

)]−1/ξ

As P(A) = P(B)P(A | B), defining ζu = P(X > u),

P(X > x) = ζu

[
1 + ξ

(
x −u

σ

)]−1/ξ

A level xm exceeded on average once every m observations is solution of:

ζu

[
1 + ξ

(
xm−u

σ

)]−1/ξ

=
1
m

so that: {
xm = u + σ

ξ
[(mζu)ξ −1] for ξ 6= 0

xm = u + σ log(mζu) for ξ = 0

provided m is sufficiently large to ensure that xm > u.
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raindays=seq(as.Date("1914/1/1"),as.Date("1961/12/30"), "days")
xyplot(rain ~ raindays)



Rainfall in SW England (17531 days)
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> summary(rain)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 0.000 0.500 3.476 4.300 86.600



Rainfall data: mean excess plot
mrl.plot(rain)
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Interpretation is not easy, but discarding the few points at the end, u = 30 seems a
reasonable choice.



Threshold choice: 2nd method

Testing a range of thresholds



Range of thresholds

Idea: fit the GPD at a range of thresholds and examine parameter stability.

Modified scale parameter
Remember the scale parameter σ̃ = σ + ξ (u−µ) of the GPD for a GEV(µ,σ ,ξ ) .
Denoting by σu the value for a threshold of u > u0, it follows:

σu = σu0 + ξ (u−u0)

where the scale parameter changes with u (unless ξ = 0).
Therefore the GPD scale parameter is modified to:

σ
∗ = σu−ξ u



Rainfall data: range of thresholds
gpd.fitrange(rain,0,50)
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Conclusion: u = 30 seems a reasonable choice.



GPD fit

> rain.fit = gpd.fit(rain,30)
# number of data above the threshold
$nexc [1] 152
# zero means successful convergence of algorithm
$conv [1] 0
# negative logarithm of likelihood at maximum
$nllh [1] 485.0937
# sigma xi
$mle [1] 7.4406505 0.1843329
# proportion of data above threshold
$rate [1] 0.008670355
# standard errors
$se [1] 0.958432 0.101151



Profile likelihood for ξ
gpd.profxi(rain.fit, -0.1, 0.6)
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The 95% confidence interval for ξ = 0.184 is: [0.014, 0.414].



Profile likelihood: 100-year return level
gpd.prof(rain.fit,m=100,80,200)
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The 95% confidence interval for 100-year level of 106.3 is: [80.9, 185.1]



gpd.diag(rain.fit)
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Dependence – Non-stationarity
(following the book and the slides of Stuart COLES)
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Time series of Geophysical Data

Extreme value data usually demonstrate:
Short term dependence (storms for example);
Dependence on covariate effects;
Seasonality (due to annual cycles in meteorology);
Long-term trends (due to gradual climatic change);
Other forms of non-stationarity (for example, the deterministic effect of tides on
sea-levels).

For temporal dependence there is a sufficiently wide-ranging theory which can be
invoked.
Other aspects have to be handled at a later stage.



Dependence

Temporal Dependence

It is useful to distinguish between:
1 Long-range dependence,
2 Short-term dependence.

The second is more problematic in environmental applications as extreme events may
tend to cluster (storms, for example).

The usual approach is to specify a condition which restricts the impact of
long-range dependence on extremes – hoping physical processes behave this way
– and to study the effect of short-term dependence.
This is equivalent to assume that two events Xi > u and Xj > u are
approximately independent provided the threshold u is high enough and time
points i and j have a large separation.
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The D(un) condition

The first step is to formulate a condition that makes precise the notion of extreme
events being near-independent if they are sufficiently separated in time.

Definition

A stationary series X1,X2, . . . is said to satisfy the D(un) condition if, for all
i1 < · · ·< ip < j1 < · · ·< jq with j1− ip > l ,

|P(Xi1 ≤ un, . . . ,Xip ≤ un,Xj1 ≤ un, . . . ,Xjq ≤ un)

−P(Xi1 ≤ un, . . . ,Xip ≤ un) P(Xj1 ≤ un, . . . ,Xjq ≤ un) | ≤ α(n, l)

where α(n, ln)→ 0 for some sequences ln such that ln/n→ 0 as n→ ∞.



Stationary series with short dependence

Theorem

Let X1.X2, . . . be a stationary process and define Mn = max(X1,X2, . . . ,Xn). If
an > 0 and bn are sequences of constants such that:

P
(

Mn−bn
an

≤ z
)
→ G(z)

where G is a non-degenerate distribution function, and if the D(un) condition is
satisfied with un = anz + bn for every real z , G is a member of the generalized
extreme value distributions.



Short-term dependence
Simulated example of a series with dependent values

Let Y1,Y2, . . . be iid RV with a standard exponential distribution.
A dependent sequence is obtained as:

Xi = max(Yi ,Yi+1)

# simulate 101 values
# from an exponential distribution
y = rexp(101)
# compute the “parallel” maximum (R jargon)
x = pmax(y[1:100], y[2:101])
xyplot(x ~ 1:100)



Short-term dependence
Simulated example of a series with dependent values

Let Y1,Y2, . . . be iid RV with a standard exponential distribution.
A dependent sequence is obtained as:
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Dependent series
Simulated example
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The maxima tend to cluster in pairs, i.e. the average cluster size is 2.



Dependent series: 2-point cluster
Comparison with independent case

Let Y1,Y2, . . . be iid RV with standard exponential distribution.
Xi = max(Yi ,Yi+1).

The marginal distribution of the dependent random variable X is:

P(Xi < x) = P(Yi < x ,Yi+1 < x) = (1− e−x )2



Dependent series: 2-point cluster
Comparison with independent case

Let X ∗1 ,X ∗2 , . . . be a series of independent random variables with the same marginal
distribution and M∗n = max(X ∗1 , . . . ,X ∗n ). With an = 1,bn = log(2n):

P(M∗n− log(2n) < x) = (1− exp[−x − log(2n)])2n

= (1− 1
2ne−x )2n → exp

(
−e−x)= G1(x)

In the dependent case, for Mn = max(X1, . . . ,Xn):

P(Mn− log(2n) < x) = P(Y1 < x + log(2n), . . . ,Yn+1 < x + log(2n))

= (1− 1
2ne−x )n+1 → exp

(
−1

2 e−x
)

= G2(x)

So:
G2(x) = (G1(x))1/2

Note: the power is the inverse of the cluster size (which is 2).
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Extremal Index

Theorem

Let X1,X2, . . . be a stationary process and X ∗1 ,X ∗2 , . . . be a sequence of independent
variables with the same marginal distribution.
Define Mn = max(X1,X2, . . .) and M∗n = max(X ∗1 , . . . ,X ∗n ). Under suitable regularity
conditions

P
(

M∗n−bn
an

≤ z
)
→ G1(z)

as n→ ∞ for normalizing sequences {an > 0} and {bn}, where G1 is a
non-degenerate distribution function, if and only if

P
(

Mn−bn
an

≤ z
)
→ G2(z)

where
G2(z) = (G1(z))θ

for a constant θ , called the extremal index, such that 0 < θ ≤ 1.



Extremal index: parameters of G2

Gθ
1 (z) =

[
exp

(
−
[
1 + ξ

(
x −µ

σ

)]−1/ξ
)]θ

= exp

(
−θ

[
1 + ξ

(
x −µ

σ

)]−1/ξ
)

= exp

(
−
[
1 + ξ

(
x −µ∗

σ∗

)]−1/ξ ∗
)

where the parameters of the independent case are obtained from those of the
stationary process by:

µ
∗ = µ− σ

ξ
(1−θ

−ξ ) σ
∗ = σ θ

ξ
ξ
∗ = ξ



Extremal index: Gumbel case

The parameters of the independent case are related to those of the stationary process
by:

µ
∗ = µ + σ log θ σ

∗ = σ

when G1 is a Gumbel distribution.
Then G2 is also Gumbel and differs only in the location parameter.



Modeling Techniques

1 Identify clusters and model cluster maxima only.
2 As in 1, but also estimate the extremal index empirically.
3 Ignore dependence since marginal model is valid, but inflate standard errors to

account for reduction in independent information.
4 Specify explicit model for dependence, such as a first-order Markov chain.



Wooster minimum winter temperatures
Negated daily minimum temperature in degrees Fahrenheit



Wooster temperatures: zoom on 40 days
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Wooster temperatures: clusters of size 2 and 4
clusters(wooWin85,u=0,2,plot=T); clusters(wooWin85,u=0,4,plot=T)
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Non-stationarity

Non-stationarity

In applications we often need to include model trends, seasonality and covariate
effects by parametric models.

Examples

1 Trend in the location parameter:

µ(t) = α + β t
2 Trend in the scale parameter:

σ(t) = α + β t
3 Non-stationary shape parameter:

ξ =

{
ξ1 for t ≤ t0

ξ2 for t > t0

4 Location parameter depends on covariate:

µ(t) = α + β Y (t)
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Modeling in R

Functions such as gev.fit enable time trends and covariates to be fitted by
specifying a design matrix:

Construct in ydat a design matrix corresponding to the required forms of time or
covariate dependence,
Specify how each of the parameters µ , σ , ξ is to be modelled as a linear function
of the columns of the design matrix. e.g. mul=c(1,3).
Specify the link function for each of the parameters µ , σ , ξ , e.g.
mulink=identity.



Fremantle sea levels (1897 to 1989)
Western Australia
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Fremantle sea levels
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> summary(SeaLevel)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.190 1.460 1.520 1.538 1.620 1.920



GEV fit and diagnostic plots

data(fremantle)
dim(fremantle)
names(fremantle)
# access directly to variable names
attach(fremantle)
# gev fit and diagnostics
fm.gev = gev.fit(SeaLevel)
gev.diag(fm.gev)
gev.profxi(fm.gev,-0.4,0.0)
gev.prof(fm.gev,100,1.83,2.05)



GEV fit: diagnostic plots
gev.diag(fm.gev)
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GEV fit: profiles
gev.profxi(fm.gev,-0.4,0.0) gev.prof(fm.gev,100,1.83,2.05)
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Introducing a covariate: SOI
xyplot(SeaLevel ~ SOI)

Southern Oscillation Index

S
ea

 le
ve

l (
m

et
er

s)

1.2

1.4

1.6

1.8

−1 0 1 2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●



Design matrix

## matrix of covariates
## Year is linearly rescaled for numerical reasons
fm.covar = cbind( (Year-1943)/46, SOI )
colnames(fm.covar) = c( "YEAR","SOI")
head(fm.covar)

YEAR SOI
[1,] -1.0000000 -0.67
[2,] -0.9782609 0.57
[3,] -0.9565217 0.16
[4,] -0.9347826 -0.65
[5,] -0.9130435 0.06
[6,] -0.8695652 0.47



GEV fit with 3 different models

# Model M1
# mu depends linearly on YEAR...
fm.gevM1 = gev.fit(SeaLevel, ydat=fm.covar, mul=1 )
# Model M2
# ... and with sigma depending exponentially of year
fm.gevM2 = gev.fit(SeaLevel, ydat=fm.covar, mul=1,

sigl=1,siglink=exp )
# Model M3
# linear dependence of mu on YEAR and SOI
fm.gevM3 = gev.fit(SeaLevel, ydat=fm.covar,

mul=c(1,2) )
gev.diag(fm.gevM1)
gev.diag(fm.gevM2)
gev.diag(fm.gevM3)



GEV fit: 3 models
gev.diag(fm.gevM1) gev.diag(fm.gevM2) gev.diag(fm.gevM3)
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Clearly M2 fits best.



Threshold models

The same techniques can also be applied to GPD models (gpd.fit).

However, there is an extra complication: if, for example, there is a time trend or
seasonality, is it appropriate to use a constant threshold?
Hence gpd.fit also allows user-specified time-dependent thresholds to be
incorporated.



The Point Process approach
to extreme value analysis
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Homogeneous Poisson process

POINT PROCESS
How can a set of points randomly scattered in space be characterized?
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Example: uniform points in a rectangle
plot(runif(200,max=10),runif(200,max=15))

To obtain n points u = (u1,u2) with random locations in a rectangle a×b we
simulate independently n values of u1 ∼U [0,a] and u2 ∼U [0,b].

How can such a set of points be characterized ?



Spatial characterization of a point process

Analysing finite subsets of points per se is not a fruitful way to go.
The spatial point process should rather be examined using objects (subsets of Rd )
called Borelians :

Counting approach: count the points covered by an object
n(A) = 7, n(B) = 0

Avoiding functional: test for whether object fills a void space
q(A) = 0, q(B) = 1.



Spatial distribution of the counting measure

To characterize the point process we can use the spatial distribution of the counting
measure N(A):

P( N(A1) = n1 )

P( N(A1) = n1, N(A2) = n2 )

...
P( N(A1) = n1, . . . , N(Ap) = np )

for any p ∈ N, n1 . . .np ∈ N, A1 . . .Ap ∈B(Rd ).

B(Rd ) is a family of Borel sets, i.e.
the smallest σ -algebra spanned by the open subsets of Rd .



Homogeneous Poisson process

HOMOGENEOUS POISSON PROCESS
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Modeling the counts: Poisson distribution

A random variable N is Poisson distributed of mean λ if its probability mass function
is

P(N = n) = e−λ λ n

n!
with λ > 0, n ∈ N.

The variance is also equal to λ .



Homogeneous Poisson process in Rd

Definition
The spatial distribution of a homogeneous Poisson process has the two properties:

for A ∈B(Rd ) the counts N(A) are Poisson distributed with mean λ |A|:

P(N(A) = n) = e−λ |A| (λ |A|)n

n!
,

for pairwise disjoint A1, . . . ,Ap ∈B(Rd ) the corresponding N(A1), . . . ,N(Ap)
are mutually independent.

The parameter λ is the intensity of the process.



Homogeneous Poisson process in Rd

Definition
The spatial distribution of a homogeneous Poisson process has the two properties:

for A ∈B(Rd ) the counts N(A) are Poisson distributed with mean λ |A|:

P(N(A) = n) = e−λ |A| (λ |A|)n

n!
,

for pairwise disjoint A1, . . . ,Ap ∈B(Rd ) the corresponding N(A1), . . . ,N(Ap)
are mutually independent.

The parameter λ is the intensity of the process.



Heterogeneous Poisson processes

HETEROGENEOUS POISSON PROCESS

The intensity is not constant: it is a function λ (x) of space.
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Heterogeneous Poisson point process

Definition

The process intensity λ = (λ (x),x ∈ Rd ) varies through space.
The spatial distribution of a heterogeneous Poisson process has the two properties:

for A ∈B(Rd ) the counts N(A) are Poisson distributed with mean
λ (A) =

∫
A λ (x)dx:

P(N(A) = n) = e−λ (A) (λ (A))n

n!

for pairwise disjoint A1, . . . ,Ap ∈B(Rd ) the corresponding N(A1), . . . ,N(Ap)
are mutually independent.



Heterogeneous Poisson point process

Definition

The process intensity λ = (λ (x),x ∈ Rd ) varies through space.
The spatial distribution of a heterogeneous Poisson process has the two properties:

for A ∈B(Rd ) the counts N(A) are Poisson distributed with mean
λ (A) =

∫
A λ (x)dx:

P(N(A) = n) = e−λ (A) (λ (A))n

n!

for pairwise disjoint A1, . . . ,Ap ∈B(Rd ) the corresponding N(A1), . . . ,N(Ap)
are mutually independent.



Heterogeneous Poisson process
Fundamental property

For a Poisson process with N(A) = n > 0
the n points are independently distributed in A with the same probability density
function:

f (x) =
λ (x)

λ (A)
for x ∈ A



PP characterization of extremes

POINT PROCESS CHARACTERIZATION OF EXTREMES

The theory of point processes opens the door to an elegant characterization of
extreme value behavior.
The point process characterization leads to nothing new: all inferences using PP
methodology could be obtained with methods already presented.

There are however two good reasons for the PP approach:
1 a unifying framework for the models previously studied,
2 likelihood with more natural formulation of non-stationarity in threshold

excesses.
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Basic idea
The extremes are viewed as a point process in a region (0,t)× [u,∞).

Intensity of extremes diminishes as threshold increases
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Point process limit for extremes
We assume the X1 ,X2 , . . . to be iid random variables for which there are sequences of constants {an > 0} and {bn} such that

P
(

Mn −bn
an

≤ z
)
→ G(z) asn→ ∞

where

G(x) = exp

(
−
[
1+ξ

(
x −µ

σ

)]−1/ξ
)

Let z− and z+ be the lower and upper endpoints of G . Then the sequence of point
processes

Nn =

{(
i

n + 1 ,
Xi −bn

an

)
: i = 1, . . . ,n

}
converges on regions of the form (0,1)× [u,∞), for any u > z−, to a Poisson process
with intensity function on A = [t1, t2]× [z ,z+) given by:

Λ(A) = (t2− t1)

[
1 + ξ

(
z−µ

σ

)]−1/ξ

The intensity function is expressed in terms of parameters of the GEV.



Wooster minimum temperatures
Defining a time-varying threshold

data(wooster)
x = seq(along = wooster)
usin = function(x,a,b,d){

a+ b * sin((( x-d )*2*pi)/365.25) }
wu = usin(x,-30,25,-75)
plot(-wooster ~ x)
lines(wu ~ x)



Wooster minimum temperatures
Negated daily minimum temperature in degrees Fahrenheit

Proposed time-varying threshold



Wooster minimum temperatures
Point process model fit

Time-varying threshold
µ(t) = β0 + β1 sin(2πt/365) + β2 cos(2πt/365)

# design matrix
ydat=cbind( sin(x*2*pi/365.25), cos(x*2*pi/365.25) )
wooster.pp =

pp.fit(-wooster,threshold=wu,ydat=ydat,mul=1:2,
sigl = 1:2, siglink = exp, method = "BFGS")

pp.diag(wooster.pp)



Wooster minimum temperatures
Point process model fit
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Multivariate MEV

Multivariate extreme value modeling

Lack of data means the precision of extreme value estimates is often poor.
To overcome this, additional information can be incorporated, which requires the
formulation of multivariate models. Questions include:

What issues are important when contemplating multivariate extremes?
What are appropriate ways to summarize dependence in extremes?
What models are suggested by asymptotic theory?
How should inference be carried out?

The multivariate extreme value theory will be develpped in some detail.
A central question is the dependence of bivariate extremes.
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Multivariate extremes: bivariate case

In a multi-variate or a multi-location setting we may wonder:
how likely is it that an extreme event occurs simultaneously
for two (or more) variables?

how likely is it that an extreme event occurs simultaneously
at two (or more) geographical locations?

The bivariate distributions contain the answer.



Example: scatterplots between two sites
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The overall correlation coefficient is the same for the two realizations:

ρ = 0.7
wheras the behaviour of bivariate extremes differs between left and right

Actually different dependence functions were used to construct these examples.
(for details see EMBRECHTS et al. 2002, p22)



Plot of the two bivariate distributions
Marginals are Gamma(3,1)

Bivariate distribution with Gaussian copula
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Bivariate distribution with Gumbel copula
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Discussion

Copulas are a convenient tool for representing bivariate distributions and
separating the dependence structure from the marginal distributions.

The Gaussian copula belongs to the family of elliptic copulas,
and implies asymptotically independent extremes.
This may be unrealistic!!!

The Gumbel copula does not belong to that family
and is suitable for extreme value analysis/simulation.

Thus, paradoxically, from the point of view of extreme value theory
a Gaussian dependence structure is generally not desirable!



An anecdote about financial extremes

Gaussian copulas were the main ingredient of a formula proposed by LI for financial
analysis in 2000.

It has been widely used by financial industry due to its simplicity.

Its inherent underevaluation of joint risks was deemed to be partly responsible for
the unforeseen advent of the financial crisis of 2007-2009.
From a web paper

(2009):
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