Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
B
bio334_spring2020_exam
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Packages
Packages
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Can Ulutekin Alvarez
bio334_spring2020_exam
Commits
8ed6b091
Commit
8ed6b091
authored
May 07, 2020
by
Mark Robinson
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Delete my_diffcyt.R
parent
1aa3c928
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
122 deletions
+0
-122
code/my_diffcyt.R
code/my_diffcyt.R
+0
-122
No files found.
code/my_diffcyt.R
deleted
100644 → 0
View file @
1aa3c928
my_diffcyt
<-
function
(
d_input
,
experiment_info
=
NULL
,
marker_info
=
NULL
,
design
=
NULL
,
formula
=
NULL
,
contrast
,
analysis_type
=
c
(
"DA"
,
"DS"
),
method_DA
=
c
(
"diffcyt-DA-edgeR"
,
"diffcyt-DA-voom"
,
"diffcyt-DA-GLMM"
),
method_DS
=
c
(
"diffcyt-DS-limma"
,
"diffcyt-DS-LMM"
),
markers_to_test
=
NULL
,
clustering_to_use
=
NULL
,
cols_to_include
=
NULL
,
subsampling
=
FALSE
,
n_sub
=
NULL
,
seed_sub
=
NULL
,
transform
=
TRUE
,
cofactor
=
5
,
cols_clustering
=
NULL
,
xdim
=
10
,
ydim
=
10
,
meta_clustering
=
FALSE
,
meta_k
=
40
,
seed_clustering
=
NULL
,
min_cells
=
3
,
min_samples
=
NULL
,
normalize
=
FALSE
,
norm_factors
=
"TMM"
,
trend_method
=
"none"
,
block_id
=
NULL
,
trend
=
TRUE
,
weights
=
TRUE
,
plot
=
TRUE
,
path
=
"."
,
verbose
=
TRUE
)
{
analysis_type
<-
match.arg
(
analysis_type
)
method_DA
<-
match.arg
(
method_DA
)
method_DS
<-
match.arg
(
method_DS
)
if
(
!
is
(
d_input
,
"SingleCellExperiment"
))
{
if
(
is.null
(
experiment_info
)
|
is.null
(
marker_info
))
{
stop
(
"'experiment_info' and 'marker_info' must be provided (unless using a SingleCellExperiment "
,
"object from CATALYST as input)"
)
}
if
(
verbose
)
message
(
"preparing data..."
)
d_se
<-
prepareData
(
d_input
,
experiment_info
,
marker_info
,
cols_to_include
,
subsampling
,
n_sub
,
seed_sub
)
if
(
transform
)
{
if
(
verbose
)
message
(
"transforming data..."
)
d_se
<-
transformData
(
d_se
,
cofactor
)
}
if
(
verbose
)
message
(
"generating clusters..."
)
d_se
<-
generateClusters
(
d_se
,
cols_clustering
,
xdim
,
ydim
,
meta_clustering
,
meta_k
,
seed_clustering
)
}
else
if
(
is
(
d_input
,
"SingleCellExperiment"
))
{
if
(
verbose
)
message
(
"using SingleCellExperiment object from CATALYST as input"
)
if
(
is.null
(
clustering_to_use
))
{
stopifnot
(
"cluster_id"
%in%
colnames
(
colData
(
d_input
)))
if
(
verbose
)
message
(
"using cluster IDs stored in column named 'cluster_id' in 'colData' of "
,
"SingleCellExperiment object from CATALYST"
)
clustering_name
<-
colnames
(
metadata
(
d_input
)
$
cluster_codes
)[
1
]
}
else
if
(
!
is.null
(
clustering_to_use
))
{
stopifnot
(
as.character
(
clustering_to_use
)
%in%
colnames
(
metadata
(
d_input
)
$
cluster_codes
))
stopifnot
(
"cluster_id"
%in%
colnames
(
colData
(
d_input
)))
if
(
verbose
)
message
(
"using cluster IDs from clustering stored in column '"
,
clustering_to_use
,
"' of 'cluster_codes' data frame in 'metadata' of SingleCellExperiment object from CATALYST"
)
code_id
<-
colData
(
d_input
)
$
cluster_id
cluster_id
<-
metadata
(
d_input
)
$
cluster_codes
[,
clustering_to_use
][
code_id
]
stopifnot
(
length
(
cluster_id
)
==
nrow
(
colData
(
d_input
)),
length
(
code_id
)
==
nrow
(
colData
(
d_input
)))
colData
(
d_input
)
$
code_id
<-
code_id
colData
(
d_input
)
$
cluster_id
<-
cluster_id
clustering_name
<-
clustering_to_use
}
stopifnot
(
"sample_id"
%in%
colnames
(
colData
(
d_input
)))
stopifnot
(
"experiment_info"
%in%
names
(
metadata
(
d_input
)))
stopifnot
(
"cluster_id"
%in%
colnames
(
colData
(
d_input
)))
stopifnot
(
"cluster_codes"
%in%
names
(
metadata
(
d_input
)))
cs_by_s
<-
split
(
seq_len
(
ncol
(
d_input
)),
colData
(
d_input
)
$
sample_id
)
cs
<-
unlist
(
cs_by_s
[
metadata
(
d_input
)
$
experiment_info
$
sample_id
])
es
<-
t
(
assays
(
d_input
)[[
"exprs"
]])[
cs
,
,
drop
=
FALSE
]
d_se
<-
SummarizedExperiment
(
assays
=
list
(
exprs
=
es
),
rowData
=
colData
(
d_input
)[
cs
,
],
colData
=
rowData
(
d_input
),
metadata
=
metadata
(
d_input
))
}
if
(
verbose
)
message
(
"calculating features..."
)
d_counts
<-
calcCounts
(
d_se
)
return
(
d_counts
)
d_medians
<-
calcMedians
(
d_se
)
d_medians_by_cluster_marker
<-
calcMediansByClusterMarker
(
d_se
)
d_medians_by_sample_marker
<-
calcMediansBySampleMarker
(
d_se
)
if
(
analysis_type
==
"DA"
&&
method_DA
==
"diffcyt-DA-edgeR"
)
{
if
(
verbose
)
message
(
"calculating DA tests using method 'diffcyt-DA-edgeR'..."
)
res
<-
testDA_edgeR
(
d_counts
,
design
,
contrast
,
trend_method
,
min_cells
,
min_samples
,
normalize
,
norm_factors
)
}
if
(
analysis_type
==
"DA"
&&
method_DA
==
"diffcyt-DA-voom"
)
{
if
(
verbose
)
message
(
"calculating DA tests using method 'diffcyt-DA-voom'..."
)
res
<-
testDA_voom
(
d_counts
,
design
,
contrast
,
block_id
,
min_cells
,
min_samples
,
normalize
,
norm_factors
,
plot
,
path
)
}
if
(
analysis_type
==
"DA"
&&
method_DA
==
"diffcyt-DA-GLMM"
)
{
if
(
verbose
)
message
(
"calculating DA tests using method 'diffcyt-DA-GLMM'..."
)
res
<-
testDA_GLMM
(
d_counts
,
formula
,
contrast
,
min_cells
,
min_samples
,
normalize
,
norm_factors
)
}
if
(
analysis_type
==
"DS"
&&
method_DS
==
"diffcyt-DS-limma"
)
{
if
(
verbose
)
message
(
"calculating DS tests using method 'diffcyt-DS-limma'..."
)
res
<-
testDS_limma
(
d_counts
,
d_medians
,
design
,
contrast
,
block_id
,
trend
,
weights
,
markers_to_test
,
min_cells
,
min_samples
,
plot
,
path
)
}
if
(
analysis_type
==
"DS"
&&
method_DS
==
"diffcyt-DS-LMM"
)
{
if
(
verbose
)
message
(
"calculating DS tests using method 'diffcyt-DS-LMM'..."
)
res
<-
testDS_LMM
(
d_counts
,
d_medians
,
formula
,
contrast
,
weights
,
markers_to_test
,
min_cells
,
min_samples
)
}
if
(
!
is
(
d_input
,
"SingleCellExperiment"
))
{
return
(
list
(
res
=
res
,
d_se
=
d_se
,
d_counts
=
d_counts
,
d_medians
=
d_medians
,
d_medians_by_cluster_marker
=
d_medians_by_cluster_marker
,
d_medians_by_sample_marker
=
d_medians_by_sample_marker
))
}
else
if
(
is
(
d_input
,
"SingleCellExperiment"
))
{
metadata
(
res
)
<-
as.list
(
c
(
metadata
(
res
),
clustering_name
=
clustering_name
))
return
(
list
(
res
=
res
,
d_counts
=
d_counts
,
d_medians
=
d_medians
,
d_medians_by_cluster_marker
=
d_medians_by_cluster_marker
,
d_medians_by_sample_marker
=
d_medians_by_sample_marker
))
}
}
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment