Commit d5a0f415 authored by Björn Oberli's avatar Björn Oberli
Browse files

Saved changes to:

	notebooks/Convolutional Neural Networks/Solutions to Exercises - Convolutional Neural Networks.ipynb
	notebooks/Convolutional Neural Networks/lab.ipynb
	notebooks/Preliminaries Numpy and Pandas/Checking Correct Installation.ipynb
parent 3d6d8743
Pipeline #446984 passed with stage
in 21 seconds
This diff is collapsed.
%% Cell type:markdown id: tags:
### Checking your installation
Please check that the notebook below runs smoothly.
%% Cell type:code id: tags:
``` python
import sys
sys.version #Should work and give 3.7.
```
%%%% Output: execute_result
'3.7.6 | packaged by conda-forge | (default, Mar 23 2020, 23:03:20) \n[GCC 7.3.0]'
'3.9.12 | packaged by conda-forge | (main, Mar 24 2022, 23:25:59) \n[GCC 10.3.0]'
%% Cell type:code id: tags:
``` python
import tensorflow as tf
tf.__version__ #Should work and give 2.7.1
```
%%%% Output: execute_result
%%%% Output: error
'2.7.1'
---------------------------------------------------------------------------
ModuleNotFoundError Traceback (most recent call last)
Input In [2], in <cell line: 1>()
----> 1 import tensorflow as tf
2 tf.__version__
ModuleNotFoundError: No module named 'tensorflow'
%% Cell type:code id: tags:
``` python
import numpy as np
np.__version__ #Should work and give something > 1.19
```
%%%% Output: execute_result
'1.19.1'
%% Cell type:code id: tags:
``` python
import matplotlib.pyplot as plt
%matplotlib inline
plt.scatter(range(100), np.sin(0.1 * np.array(range(100))))
```
%%%% Output: execute_result
<matplotlib.collections.PathCollection at 0x7fd13651a050>
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
```
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment