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1: Creating objects in R

3+5

## [1] 8

# we can simply type math in the console

when we need to assign values to objects, <- is the assignment operator. (shortcut is alt + -)

weight_kg <- 55
weight_kg

## [1] 55

Naming variables, names cannot start with numbers, and there are some names already use
for fundamental functions in R. Its also best to avoid dots.

When assigning a value to an object, r does not print anything, but we can force R to print
the value by using () or by typing the object name

weight_kg <- 55 # doesnt print
(weight_kg <- 55) #it now has been printed

## [1] 55

now we can do arithmetic with our variable, for example, convert weight into pounds.

weight_lb <- 2.2*weight_kg
weight_lb

## [1] 121

2: Functions and their arguments

many functions are predefined or can be made avaible by importing R packages.

round(3.14159)
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## [1] 3

# automatically, it rounds to the nearest whole number.
# to see mode digits :
round(3.14159, digits = 2)

## [1] 3.14

# OR
round(3.14159, 2)

## [1] 3.14

3: Vectors and data types

We can assign a series of values to a vector using the c() function.

weight_g <- c(50,60,65,83)
weight_g

## [1] 50 60 65 83

# with characters it works too
molecules <- c("dna","rna","protein")
molecules

## [1] "dna" "rna" "protein"

Functions to inspect content of a vector

length(weight_g)

## [1] 4

length(molecules)

## [1] 3

# class to know if either its a numeric or character vector
class(weight_g)

## [1] "numeric"

class(molecules)

## [1] "character"

# str for an overview of the structure of an object
str(weight_g)

## num [1:4] 50 60 65 83

str(molecules)

## chr [1:3] "dna" "rna" "protein"
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We can use c() again to add other elements to our vector

weight_g <- c(weight_g, 90)
weight_g <- c(30, weight_g)

4: Subsetting vectors

If we want to extract values from a vector, we need to use brackets [] (shortcut is alt+maj+5)

molecules <- c("dna", "rna", "peptide", "protein")
molecules[2]

## [1] "rna"

# we extracted only the second value
molecules[c(3,2)]

## [1] "peptide" "rna"

# to extract more than one value, we need c()

We can repeat indices to create an object with more elements than the original one

more_molecules <- molecules[c(1, 2, 3, 2, 1, 4)]
more_molecules

## [1] "dna" "rna" "peptide" "rna" "dna" "protein"

it is also possible to get all the elements of a vector expect some specified using negative
indices.

molecules[-1] # all but the first one

## [1] "rna" "peptide" "protein"

molecules[-c(1,3)] # all but the first and the third one

## [1] "rna" "protein"

5: Conditional subsetting

We can subset by using logical vector, TRUE select the element with the same index and
FALSE will not.

weight_g <- c(21, 34, 39, 54, 55)
weight_g[c(TRUE, FALSE, TRUE, TRUE, FALSE)]

## [1] 21 39 54
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but we usually dont type them but hand

# weight>50
# returns logical with TRUE for the indice higher than 50

to select only values above 50

weight_g[weight_g>50]

## [1] 54 55

“&” means that both conditions are true

“|” means that at least one condition is true (shortcut is alt+maj+l)

weight_g[weight_g < 30 | weight_g > 50]

## [1] 21 54 55

weight_g[weight_g >= 30 & weight_g == 21]

## numeric(0)

If we search fo a certains strings in a vector, we can use ‰in‰, it will test if any of the
elements of a search vector are found.

molecules <- c("dan", "rna", "protein", "peptide")
molecules[molecules == "rna" | molecules == "dna"]

## [1] "rna"

molecules %in% c("rna", "dna", "metabolite", "peptide", "glycerol")

## [1] FALSE TRUE FALSE TRUE

molecules[molecules %in% c("rna", "dna", "metabolite", "peptide", "glycerol")]

## [1] "rna" "peptide"

6: Names

We can anme each elements of a vector using the names() function.

x <- c(1, 5, 3, 5, 10)
names(x) <- c("A", "B", "C", "D", "E")
names(x)

## [1] "A" "B" "C" "D" "E"

# we now have names
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When a vector has names, we can access elements by their names.

x[c(1,3)]

## A C
## 1 3

# is the same as
x[c("A","C")]

## A C
## 1 3

7: Missing data

If the data includes NA, most of the functions will return NA. So we need to ignore them.

heights <- c(2, 4, 4, NA, 6)
mean(heights)

## [1] NA

# It returns NA bc one value is "NA"
mean(heights, na.rm = TRUE)

## [1] 4

# now the NA value is ignored

to extract elements which are not missing values

heights[!is.na(heights)]

## [1] 2 4 4 6

8: Generating vectors

There exist functions to generate vectors of different type. For a vecor of numerics:

numeric(3)

## [1] 0 0 0

numeric(10)

## [1] 0 0 0 0 0 0 0 0 0 0

Replicate elements

For exemple, if we want to repeat “-1” 5 times :

rep(-1,5)
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## [1] -1 -1 -1 -1 -1

To repeat 1,2,3 five times :

rep(c(1,2,3),5)

## [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

To repeat 1,2 an 3 five times but with 5 1s, 5 2s and 5 3s in that order:

rep(c(1,2,3),each=5)

## [1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

#OR
sort(rep(c(1,2,3),5))

## [1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

Sequence generation

seq(from = 1, to = 20, by = 2)

## [1] 1 3 5 7 9 11 13 15 17 19

default value of “by” is 1

seq(1,5,1)

## [1] 1 2 3 4 5

# is the same as
seq(1,5)

## [1] 1 2 3 4 5

# is the same as
1:5

## [1] 1 2 3 4 5

If we want a length of 3

seq(from = 1, to = 20, length.out = 3)

## [1] 1.0 10.5 20.0

Random samples and permutations

sample(1:10) # for numbers
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## [1] 4 10 2 8 1 6 5 3 9 7

sample(letters,5) # for letters

## [1] "m" "k" "y" "c" "l"

If we want an output larger than the input vector, we need to add “replace = TRUE”

sample(1:5, 10, replace = TRUE)

## [1] 2 2 4 3 4 1 2 3 5 4

same set.seed repeat always the same random draw

set.seed(123)
sample(1:10)

## [1] 3 10 2 8 6 9 1 7 5 4

set.seed(123)
sample(1:10)

## [1] 3 10 2 8 6 9 1 7 5 4

rnorm

rnorm(5,2,2)

## [1] -0.5301225 0.6262943 1.1086761 4.4481636 2.7196277

# rnorm(n,mean,sd)

9: Additional exercises

Question 1

# create vectors x and y 1 to 10 and 10 to 1
x <- 1:10
y <- 10:1

#types ?
class(x)

## [1] "integer"

class(y) #theyre both integers

## [1] "integer"

#sum of each? identical ?

sumx<- sum(x)
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sumy <- sum(y)
identical(sumx,sumy) #its true so sum of x and y are the same

## [1] TRUE

#swap values of x and y
y2 <- y
y <- x
x <- y2
x

## [1] 10 9 8 7 6 5 4 3 2 1

y #i swapped x and y valus

## [1] 1 2 3 4 5 6 7 8 9 10

Question 2

# vector x with number 20 to 2, retrieve (=recup) elements larger than 5 or equal to 15

x <- (20:2)
x[x>5 | x<=15 ]

## [1] 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

#remove the fisrt 8 elemnts from x and store in x2

x2 <- x[-c(1:8)]
x2

## [1] 12 11 10 9 8 7 6 5 4 3 2

Question 3

#counting from Monday to Friday how many molds you see in your cell cultures.
#vector "molds" with results 1, 2 , 5, 8, 10

molds <- c(1,2,5,8,10)
names(molds) <- c("monday","tuesday","wednesday","thursday","friday")

#extract the number of molds identified on Wednesday.
molds["wednesday"]

## wednesday
## 5

Question 4

# mean of a random distribution N(15, 1) of size 100 and store it in variable m1
m1<- sample(15:1, 100, replace=TRUE)
mm1<- mean(m1)
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#mean of a random distribution N(0, 1) of size 100 and store it in variable m2
m2 <- sample(0:1, 100, replace=TRUE)
mm2 <- mean(m2)

#mean of another random distribution N(15, 1) of size 1000 and store it in variable m3
m3 <- sample(15:1, 1000, replace= TRUE)
mm3 <- mean(m3)

#which one of m1 and m2 will be larger
mm1>mm2 #TRUE so mm1 is larger than mm2

## [1] TRUE

Question 5

# simulate a set of 100 students voting (randomly) for 1, 2 or 3
std <- sample(1:3, 100, replace=TRUE)

#values as a table
table(std)

## std
## 1 2 3
## 29 32 39

#number of stds with more than 1
#?

Question 6

v1 <- c(1, 2, 3, "4")
v2 <- c(45, 23, TRUE, 21, 12, 34)
v3 <- c(v1, v2)

#
class(v3)

## [1] "character"

length(v3)

## [1] 10

names(v3) <- c(letters[1:10])
v3

## a b c d e f g h i j
## "1" "2" "3" "4" "45" "23" "1" "21" "12" "34"

# create v4 containing "2" "1" "NEW" "3" "4" with v1
v4 <- c("2","1","NEW","3","4")
v4

## [1] "2" "1" "NEW" "3" "4"
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#round pi o 2 decimals
round(pi, digits = 2)

## [1] 3.14

Question 7

p1 <- c(1, 1, 1)
names(p1) <- c("A34", "D3", "F12")
p2 <- c(2, 2, 2, 2)
names(p2) <- c("W4", "A21", "K7", "K8")
p3 <- c(3, 3, 3, 3, 3, 3, 3)
names(p3) <- c("D1", "D2", "A10", "D5", "D15", "A16", "B22")

# command would you use to identify the number of respective answers
length(p1)

## [1] 3

length(p2)

## [1] 4

length(p3)

## [1] 7

#Concatenate all answers into a single vector p4.
p4 <- c(p1,p2,p3)
p4

## A34 D3 F12 W4 A21 K7 K8 D1 D2 A10 D5 D15 A16 B22
## 1 1 1 2 2 2 2 3 3 3 3 3 3 3

#get the vote for student D2 from vector p4
p4["D2"]

## D2
## 3

Question 8

test <- c(student1 = 12, student2 = 11, student3 = 4, student4 = 6, student5 = 7,
student6 = 8.5, student7 = 13.5, student8 = 5.5, student9 = 13.5,
student10 = 2.5, student11 = 17, student12 = 18, student13 = 15,
student14 = 8, student15 = 7, student16 = 12, student17 = 18.5,
student18 = 7.5, student19 = 13.5, student20 = 6, student21 = 9,
student22 = 16, student23 = 8.5, student24 = 9, student25 = NA,
student26 = NA, student27 = 14, student28 = 16.5, student29 = 12,
student30 = NA, student31 = 12.5, student32 = 3, student33 = NA,
student34 = 17, student35 = 16, student36 = 9, student37 = 6,
student38 = 7, student39 = 8.5, student40 = 8.5, student41 = 8,
student42 = 16.5, student43 = 4.5, student44 = NA, student45 = 8,
student46 = 8, student47 = 7.5, student48 = 8.5, student49 = 2,
student50 = 14, student51 = 6.5, student52 = 12, student53 = 16.5,
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student54 = 7, student55 = 9.5, student56 = 12, student57 = 8.5,
student58 = 15.5, student59 = 9, student60 = 13.5, student61 = 18,
student62 = 12.5, student63 = 19.5, student64 = 13, student65 = 17.5,
student66 = 8.5, student67 = 9, student68 = 7, student69 = 12.5,
student70 = NA, student71 = 19, student72 = 11.5, student73 = 9,
student74 = 9.5, student75 = 12, student76 = 11, student77 = 12,
student78 = 14, student79 = 17, student80 = 8.5, student81 = 10,
student82 = 10, student83 = NA, student84 = 10.5, student85 = 14,
student86 = 7.5, student87 = 4, student88 = 9, student89 = 6.5,
student90 = 10.5, student91 = 9.5, student92 = 13, student93 = 11.5,
student94 = NA, student95 = 6, student96 = 12.5, student97 = 11.5,
student98 = 4, student99 = 11.5, student100 = 8)

#number of students that have a mark > 10?

test1 <- test[!is.na(test)]
more_than_10 <- test1[test1>10]
length(more_than_10)

## [1] 45

# number of students that have a mark greater than the average score

mean(test1)

## [1] 10.6087

more_than_avg <- test1[test1>10.6087]
length(more_than_avg)

## [1] 43
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