
Chapitre 3 : Introduction to R

Armelle de le Court

20/04/2021

1: Creating objects in R

3+5

[1] 8

we can simply type math in the console

when we need to assign values to objects, <- is the assignment operator. (shortcut is alt + -)

weight_kg <- 55
weight_kg

[1] 55

Naming variables, names cannot start with numbers, and there are some names already use
for fundamental functions in R. Its also best to avoid dots.

When assigning a value to an object, r does not print anything, but we can force R to print
the value by using () or by typing the object name

weight_kg <- 55 # doesnt print
(weight_kg <- 55) #it now has been printed

[1] 55

now we can do arithmetic with our variable, for example, convert weight into pounds.

weight_lb <- 2.2*weight_kg
weight_lb

[1] 121

2: Functions and their arguments

many functions are predefined or can be made avaible by importing R packages.

round(3.14159)

1

[1] 3

automatically, it rounds to the nearest whole number.
to see mode digits :
round(3.14159, digits = 2)

[1] 3.14

OR
round(3.14159, 2)

[1] 3.14

3: Vectors and data types

We can assign a series of values to a vector using the c() function.

weight_g <- c(50,60,65,83)
weight_g

[1] 50 60 65 83

with characters it works too
molecules <- c("dna","rna","protein")
molecules

[1] "dna" "rna" "protein"

Functions to inspect content of a vector

length(weight_g)

[1] 4

length(molecules)

[1] 3

class to know if either its a numeric or character vector
class(weight_g)

[1] "numeric"

class(molecules)

[1] "character"

str for an overview of the structure of an object
str(weight_g)

num [1:4] 50 60 65 83

str(molecules)

chr [1:3] "dna" "rna" "protein"

2

We can use c() again to add other elements to our vector

weight_g <- c(weight_g, 90)
weight_g <- c(30, weight_g)

4: Subsetting vectors

If we want to extract values from a vector, we need to use brackets [] (shortcut is alt+maj+5)

molecules <- c("dna", "rna", "peptide", "protein")
molecules[2]

[1] "rna"

we extracted only the second value
molecules[c(3,2)]

[1] "peptide" "rna"

to extract more than one value, we need c()

We can repeat indices to create an object with more elements than the original one

more_molecules <- molecules[c(1, 2, 3, 2, 1, 4)]
more_molecules

[1] "dna" "rna" "peptide" "rna" "dna" "protein"

it is also possible to get all the elements of a vector expect some specified using negative
indices.

molecules[-1] # all but the first one

[1] "rna" "peptide" "protein"

molecules[-c(1,3)] # all but the first and the third one

[1] "rna" "protein"

5: Conditional subsetting

We can subset by using logical vector, TRUE select the element with the same index and
FALSE will not.

weight_g <- c(21, 34, 39, 54, 55)
weight_g[c(TRUE, FALSE, TRUE, TRUE, FALSE)]

[1] 21 39 54

3

but we usually dont type them but hand

weight>50
returns logical with TRUE for the indice higher than 50

to select only values above 50

weight_g[weight_g>50]

[1] 54 55

“&” means that both conditions are true

“|” means that at least one condition is true (shortcut is alt+maj+l)

weight_g[weight_g < 30 | weight_g > 50]

[1] 21 54 55

weight_g[weight_g >= 30 & weight_g == 21]

numeric(0)

If we search fo a certains strings in a vector, we can use ‰in‰, it will test if any of the
elements of a search vector are found.

molecules <- c("dan", "rna", "protein", "peptide")
molecules[molecules == "rna" | molecules == "dna"]

[1] "rna"

molecules %in% c("rna", "dna", "metabolite", "peptide", "glycerol")

[1] FALSE TRUE FALSE TRUE

molecules[molecules %in% c("rna", "dna", "metabolite", "peptide", "glycerol")]

[1] "rna" "peptide"

6: Names

We can anme each elements of a vector using the names() function.

x <- c(1, 5, 3, 5, 10)
names(x) <- c("A", "B", "C", "D", "E")
names(x)

[1] "A" "B" "C" "D" "E"

we now have names

4

When a vector has names, we can access elements by their names.

x[c(1,3)]

A C
1 3

is the same as
x[c("A","C")]

A C
1 3

7: Missing data

If the data includes NA, most of the functions will return NA. So we need to ignore them.

heights <- c(2, 4, 4, NA, 6)
mean(heights)

[1] NA

It returns NA bc one value is "NA"
mean(heights, na.rm = TRUE)

[1] 4

now the NA value is ignored

to extract elements which are not missing values

heights[!is.na(heights)]

[1] 2 4 4 6

8: Generating vectors

There exist functions to generate vectors of different type. For a vecor of numerics:

numeric(3)

[1] 0 0 0

numeric(10)

[1] 0 0 0 0 0 0 0 0 0 0

Replicate elements

For exemple, if we want to repeat “-1” 5 times :

rep(-1,5)

5

[1] -1 -1 -1 -1 -1

To repeat 1,2,3 five times :

rep(c(1,2,3),5)

[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

To repeat 1,2 an 3 five times but with 5 1s, 5 2s and 5 3s in that order:

rep(c(1,2,3),each=5)

[1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

#OR
sort(rep(c(1,2,3),5))

[1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

Sequence generation

seq(from = 1, to = 20, by = 2)

[1] 1 3 5 7 9 11 13 15 17 19

default value of “by” is 1

seq(1,5,1)

[1] 1 2 3 4 5

is the same as
seq(1,5)

[1] 1 2 3 4 5

is the same as
1:5

[1] 1 2 3 4 5

If we want a length of 3

seq(from = 1, to = 20, length.out = 3)

[1] 1.0 10.5 20.0

Random samples and permutations

sample(1:10) # for numbers

6

[1] 4 10 2 8 1 6 5 3 9 7

sample(letters,5) # for letters

[1] "m" "k" "y" "c" "l"

If we want an output larger than the input vector, we need to add “replace = TRUE”

sample(1:5, 10, replace = TRUE)

[1] 2 2 4 3 4 1 2 3 5 4

same set.seed repeat always the same random draw

set.seed(123)
sample(1:10)

[1] 3 10 2 8 6 9 1 7 5 4

set.seed(123)
sample(1:10)

[1] 3 10 2 8 6 9 1 7 5 4

rnorm

rnorm(5,2,2)

[1] -0.5301225 0.6262943 1.1086761 4.4481636 2.7196277

rnorm(n,mean,sd)

9: Additional exercises

Question 1

create vectors x and y 1 to 10 and 10 to 1
x <- 1:10
y <- 10:1

#types ?
class(x)

[1] "integer"

class(y) #theyre both integers

[1] "integer"

#sum of each? identical ?

sumx<- sum(x)

7

sumy <- sum(y)
identical(sumx,sumy) #its true so sum of x and y are the same

[1] TRUE

#swap values of x and y
y2 <- y
y <- x
x <- y2
x

[1] 10 9 8 7 6 5 4 3 2 1

y #i swapped x and y valus

[1] 1 2 3 4 5 6 7 8 9 10

Question 2

vector x with number 20 to 2, retrieve (=recup) elements larger than 5 or equal to 15

x <- (20:2)
x[x>5 | x<=15]

[1] 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

#remove the fisrt 8 elemnts from x and store in x2

x2 <- x[-c(1:8)]
x2

[1] 12 11 10 9 8 7 6 5 4 3 2

Question 3

#counting from Monday to Friday how many molds you see in your cell cultures.
#vector "molds" with results 1, 2 , 5, 8, 10

molds <- c(1,2,5,8,10)
names(molds) <- c("monday","tuesday","wednesday","thursday","friday")

#extract the number of molds identified on Wednesday.
molds["wednesday"]

wednesday
5

Question 4

mean of a random distribution N(15, 1) of size 100 and store it in variable m1
m1<- sample(15:1, 100, replace=TRUE)
mm1<- mean(m1)

8

#mean of a random distribution N(0, 1) of size 100 and store it in variable m2
m2 <- sample(0:1, 100, replace=TRUE)
mm2 <- mean(m2)

#mean of another random distribution N(15, 1) of size 1000 and store it in variable m3
m3 <- sample(15:1, 1000, replace= TRUE)
mm3 <- mean(m3)

#which one of m1 and m2 will be larger
mm1>mm2 #TRUE so mm1 is larger than mm2

[1] TRUE

Question 5

simulate a set of 100 students voting (randomly) for 1, 2 or 3
std <- sample(1:3, 100, replace=TRUE)

#values as a table
table(std)

std
1 2 3
29 32 39

#number of stds with more than 1
#?

Question 6

v1 <- c(1, 2, 3, "4")
v2 <- c(45, 23, TRUE, 21, 12, 34)
v3 <- c(v1, v2)

#
class(v3)

[1] "character"

length(v3)

[1] 10

names(v3) <- c(letters[1:10])
v3

a b c d e f g h i j
"1" "2" "3" "4" "45" "23" "1" "21" "12" "34"

create v4 containing "2" "1" "NEW" "3" "4" with v1
v4 <- c("2","1","NEW","3","4")
v4

[1] "2" "1" "NEW" "3" "4"

9

#round pi o 2 decimals
round(pi, digits = 2)

[1] 3.14

Question 7

p1 <- c(1, 1, 1)
names(p1) <- c("A34", "D3", "F12")
p2 <- c(2, 2, 2, 2)
names(p2) <- c("W4", "A21", "K7", "K8")
p3 <- c(3, 3, 3, 3, 3, 3, 3)
names(p3) <- c("D1", "D2", "A10", "D5", "D15", "A16", "B22")

command would you use to identify the number of respective answers
length(p1)

[1] 3

length(p2)

[1] 4

length(p3)

[1] 7

#Concatenate all answers into a single vector p4.
p4 <- c(p1,p2,p3)
p4

A34 D3 F12 W4 A21 K7 K8 D1 D2 A10 D5 D15 A16 B22
1 1 1 2 2 2 2 3 3 3 3 3 3 3

#get the vote for student D2 from vector p4
p4["D2"]

D2
3

Question 8

test <- c(student1 = 12, student2 = 11, student3 = 4, student4 = 6, student5 = 7,
student6 = 8.5, student7 = 13.5, student8 = 5.5, student9 = 13.5,
student10 = 2.5, student11 = 17, student12 = 18, student13 = 15,
student14 = 8, student15 = 7, student16 = 12, student17 = 18.5,
student18 = 7.5, student19 = 13.5, student20 = 6, student21 = 9,
student22 = 16, student23 = 8.5, student24 = 9, student25 = NA,
student26 = NA, student27 = 14, student28 = 16.5, student29 = 12,
student30 = NA, student31 = 12.5, student32 = 3, student33 = NA,
student34 = 17, student35 = 16, student36 = 9, student37 = 6,
student38 = 7, student39 = 8.5, student40 = 8.5, student41 = 8,
student42 = 16.5, student43 = 4.5, student44 = NA, student45 = 8,
student46 = 8, student47 = 7.5, student48 = 8.5, student49 = 2,
student50 = 14, student51 = 6.5, student52 = 12, student53 = 16.5,

10

student54 = 7, student55 = 9.5, student56 = 12, student57 = 8.5,
student58 = 15.5, student59 = 9, student60 = 13.5, student61 = 18,
student62 = 12.5, student63 = 19.5, student64 = 13, student65 = 17.5,
student66 = 8.5, student67 = 9, student68 = 7, student69 = 12.5,
student70 = NA, student71 = 19, student72 = 11.5, student73 = 9,
student74 = 9.5, student75 = 12, student76 = 11, student77 = 12,
student78 = 14, student79 = 17, student80 = 8.5, student81 = 10,
student82 = 10, student83 = NA, student84 = 10.5, student85 = 14,
student86 = 7.5, student87 = 4, student88 = 9, student89 = 6.5,
student90 = 10.5, student91 = 9.5, student92 = 13, student93 = 11.5,
student94 = NA, student95 = 6, student96 = 12.5, student97 = 11.5,
student98 = 4, student99 = 11.5, student100 = 8)

#number of students that have a mark > 10?

test1 <- test[!is.na(test)]
more_than_10 <- test1[test1>10]
length(more_than_10)

[1] 45

number of students that have a mark greater than the average score

mean(test1)

[1] 10.6087

more_than_avg <- test1[test1>10.6087]
length(more_than_avg)

[1] 43

11

	1: Creating objects in R
	when we need to assign values to objects, <- is the assignment operator. (shortcut is alt + -)
	Naming variables, names cannot start with numbers, and there are some names already use for fundamental functions in R. Its also best to avoid dots.
	When assigning a value to an object, r does not print anything, but we can force R to print the value by using () or by typing the object name
	now we can do arithmetic with our variable, for example, convert weight into pounds.

	2: Functions and their arguments
	many functions are predefined or can be made avaible by importing R packages.

	3: Vectors and data types
	We can assign a series of values to a vector using the c() function.
	Functions to inspect content of a vector
	We can use c() again to add other elements to our vector

	4: Subsetting vectors
	If we want to extract values from a vector, we need to use brackets [] (shortcut is alt+maj+5)
	We can repeat indices to create an object with more elements than the original one
	it is also possible to get all the elements of a vector expect some specified using negative indices.

	5: Conditional subsetting
	We can subset by using logical vector, TRUE select the element with the same index and FALSE will not.
	but we usually dont type them but hand
	to select only values above 50
	``&'' means that both conditions are true
	``|'' means that at least one condition is true (shortcut is alt+maj+l)
	If we search fo a certains strings in a vector, we can use ‰in‰, it will test if any of the elements of a search vector are found.

	6: Names
	We can anme each elements of a vector using the names() function.
	When a vector has names, we can access elements by their names.

	7: Missing data
	If the data includes NA, most of the functions will return NA. So we need to ignore them.
	to extract elements which are not missing values

	8: Generating vectors
	There exist functions to generate vectors of different type. For a vecor of numerics:
	Replicate elements
	For exemple, if we want to repeat ``-1'' 5 times :
	To repeat 1,2,3 five times :
	To repeat 1,2 an 3 five times but with 5 1s, 5 2s and 5 3s in that order:
	Sequence generation
	default value of ``by'' is 1
	If we want a length of 3
	Random samples and permutations
	If we want an output larger than the input vector, we need to add ``replace = TRUE''
	same set.seed repeat always the same random draw
	rnorm

	9: Additional exercises
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8

