Commit 0033a614 authored by Mirko Birbaumer's avatar Mirko Birbaumer
Browse files

Added output to notebooks

parent 0ac6d4aa
Pipeline #420287 passed with stage
in 38 seconds
......@@ -1871,7 +1871,7 @@
},
{
"cell_type": "code",
"execution_count": 283,
"execution_count": 5,
"metadata": {},
"outputs": [
{
......@@ -1907,7 +1907,7 @@
},
{
"cell_type": "code",
"execution_count": 296,
"execution_count": 6,
"metadata": {},
"outputs": [
{
......@@ -1973,26 +1973,26 @@
},
{
"cell_type": "code",
"execution_count": 298,
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.axis.YTick at 0x7f070290c250>,\n",
" <matplotlib.axis.YTick at 0x7f070290e810>,\n",
" <matplotlib.axis.YTick at 0x7f0703fc39d0>,\n",
" <matplotlib.axis.YTick at 0x7f07028fa710>,\n",
" <matplotlib.axis.YTick at 0x7f07028fa6d0>,\n",
" <matplotlib.axis.YTick at 0x7f07028e8350>,\n",
" <matplotlib.axis.YTick at 0x7f07028fadd0>,\n",
" <matplotlib.axis.YTick at 0x7f0702882150>,\n",
" <matplotlib.axis.YTick at 0x7f07028825d0>,\n",
" <matplotlib.axis.YTick at 0x7f0702882b90>,\n",
" <matplotlib.axis.YTick at 0x7f070288b110>]"
"[<matplotlib.axis.YTick at 0x7f096f2f5e50>,\n",
" <matplotlib.axis.YTick at 0x7f096f2f54d0>,\n",
" <matplotlib.axis.YTick at 0x7f097d868fd0>,\n",
" <matplotlib.axis.YTick at 0x7f096f26f310>,\n",
" <matplotlib.axis.YTick at 0x7f096f26f210>,\n",
" <matplotlib.axis.YTick at 0x7f096f26ff50>,\n",
" <matplotlib.axis.YTick at 0x7f096f2751d0>,\n",
" <matplotlib.axis.YTick at 0x7f096f2752d0>,\n",
" <matplotlib.axis.YTick at 0x7f096f275810>,\n",
" <matplotlib.axis.YTick at 0x7f096f27d3d0>,\n",
" <matplotlib.axis.YTick at 0x7f096f275410>]"
]
},
"execution_count": 298,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
},
......@@ -2073,7 +2073,7 @@
},
{
"cell_type": "code",
"execution_count": 300,
"execution_count": 8,
"metadata": {},
"outputs": [
{
......@@ -2144,7 +2144,7 @@
},
{
"cell_type": "code",
"execution_count": 302,
"execution_count": 9,
"metadata": {},
"outputs": [
{
......@@ -2201,7 +2201,7 @@
},
{
"cell_type": "code",
"execution_count": 106,
"execution_count": 12,
"metadata": {},
"outputs": [
{
......@@ -2242,7 +2242,7 @@
},
{
"cell_type": "code",
"execution_count": 107,
"execution_count": 13,
"metadata": {},
"outputs": [
{
......@@ -2256,9 +2256,9 @@
"Max index: 2\n",
"\n",
"Use numpy to create a [3,3] dimension array with random number\n",
"[[0.55382541 0.36160037 0.68662274]\n",
" [0.35028249 0.09885074 0.38463975]\n",
" [0.10113939 0.74698869 0.02460112]]\n"
"[[0.48561168 0.60381055 0.21083223]\n",
" [0.13291895 0.83313963 0.32659584]\n",
" [0.797164 0.87792929 0.74653135]]\n"
]
}
],
......
%% Cell type:markdown id: tags:
# Solution to Problem 1
%% Cell type:code id: tags:
``` python
# Use the numpy library
import numpy as np
np.set_printoptions(precision=2)
######################################################
#
# MESSAGE TO STUDENTS:
#
# This file contains a solution to the coding quiz. Feel free
# to look at it when you are stuck, but try to solve the
# problem on your own first.
#
######################################################
def prepare_inputs(inputs):
# TODO: create a 2-dimensional ndarray from the given 1-dimensional list;
# assign it to input_array
input_array = np.array([inputs])
# TODO: find the minimum value in input_array and subtract that
# value from all the elements of input_array. Store the
# result in inputs_minus_min
# We can use NumPy's min function and element-wise division
inputs_minus_min = input_array - np.min(input_array)
# TODO: find the maximum value in inputs_minus_min and divide
# all of the values in inputs_minus_min by the maximum value.
# Store the results in inputs_div_max.
# We can use NumPy's max function and element-wise division
inputs_div_max = inputs_minus_min / np.max(inputs_minus_min)
return input_array, inputs_minus_min, inputs_div_max
def multiply_inputs(m1, m2):
# Check the shapes of the matrices m1 and m2.
# m1 and m2 will be ndarray objects.
#
# Return False if the shapes cannot be used for matrix
# multiplication. You may not use a transpose
if m1.shape[0] != m2.shape[1] and m1.shape[1] != m2.shape[0]:
return False
# Have not returned False, so calculate the matrix product
# of m1 and m2 and return it. Do not use a transpose,
# but you swap their order if necessary
if m1.shape[1] == m2.shape[0]:
return np.matmul(m1, m2)
else:
return np.matmul(m2, m1)
def find_mean(values):
# Return the average of the values in the given Python list
# NumPy has a lot of helpful methods like this.
return np.mean(values)
```
%% Cell type:code id: tags:
``` python
input_array, inputs_minus_min, inputs_div_max = prepare_inputs([-1,2,7])
print("Input as Array: {}".format(input_array))
print("Dimension of Input Array: {}".format(input_array.ndim))
print("Input minus min: {}".format(inputs_minus_min))
print("Input Array: {}".format(inputs_div_max))
print("Multiply 1:\n{}".format(multiply_inputs(np.array([[1,2,3],[4,5,6]]), np.array([[1],[2],[3],[4]]))))
print("Multiply 2:\n{}".format(multiply_inputs(np.array([[1,2,3],[4,5,6]]), np.array([[1],[2],[3]]))))
print("Multiply 3:\n{}".format(multiply_inputs(np.array([[1,2,3],[4,5,6]]), np.array([[1,2]]))))
print("Mean == {}".format(find_mean([1,3,4])))
```
%%%% Output: stream
Input as Array: [[-1 2 7]]
Dimension of Input Array: 2
Input minus min: [[0 3 8]]
Input Array: [[0. 0.38 1. ]]
Multiply 1:
False
Multiply 2:
[[14]
[32]]
Multiply 3:
[[ 9 12 15]]
Mean == 2.6666666666666665
%% Cell type:markdown id: tags:
# Solution to Problem 2 - Body Mass Index
%% Cell type:code id: tags:
``` python
# import numpy
import numpy as np
np.set_printoptions(precision=2)
def BMI(weight, length):
# Function returning the BMI of input vectors m and l
m = np.array(weight) # Create arrays from inputs
l = np.array(length)
# Calculate all BMI's simultaniously
BMI = np.divide(m, l**2)
# Or just
BMI = m/l**2
return BMI
m_example = [60, 72, 57, 90, 95, 72]
l_example = [1.75, 1.80, 1.65, 1.90, 1.74, 1.91]
print("The given weights and lengths result in BMI's: \n{}".format(BMI(m_example, l_example)))
```
%%%% Output: stream
The given weights and lengths result in BMI's:
[19.59 22.22 20.94 24.93 31.38 19.74]
%% Cell type:markdown id: tags:
# Solution to Problem 3 - Matrix Multiplication
We will apply a couple of transformations to manipulate the $x$ and $y$ coordinates of the following points which have three dimensional components of $x$, $y$ and ascii character index similar to the way an image pixel has 3 dimensional components of $x$, $y$, and frequency (or intensity).
$$
\begin{align}
a & = (0, 1, 0) \\
b & = (1, 0, 1) \\
c & = (0, -1, 2) \\
d & = (-1, 0, 3)
\end{align}
$$
%% Cell type:code id: tags:
``` python
import matplotlib.pyplot as plt
import numpy as np
import string
# points a, b and, c
a, b, c, d = (0, 1, 0), (1, 0, 1), (0, -1, 2), (-1, 0, 3)
# matrix with row vectors of points
A = np.array([a, b, c, d])
# 3x3 Identity transformation matrix
I = np.eye(3)
color_lut = 'rgbc'
fig = plt.figure()
ax = plt.gca()
xs = []
ys = []
for row in A:
output_row = np.matmul(I, row)
x, y, i = output_row
xs.append(x)
ys.append(y)
i = int(i) # convert float to int for indexing
c = color_lut[i]
plt.scatter(x, y, color=c)
plt.text(x + 0.15, y, f"{string.ascii_letters[i]}")
xs.append(xs[0])
ys.append(ys[0])
plt.plot(xs, ys, color="gray", linestyle='dotted')
ax.set_xticks(np.arange(-2.5, 3, 0.5))
ax.set_yticks(np.arange(-2.5, 3, 0.5))
plt.grid()
plt.show()
```
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
(a) Rotate the points by 45 degrees, scale them by 1.5 and add the vector $v=(0.5, 0.5)$ to the product of these transformations.
%% Cell type:code id: tags:
``` python
# create the scaling transformation matrix
T_s = np.array([[1.5, 0, 0], [0, 1.5, 0], [0, 0, 1]])
T_r = np.array([[0.707, 0.707, 0], [-0.707, 0.707, 0], [0, 0, 1]])
v = np.array([0.5, 0.5, 0])
# create combined tranformation matrix
T = np.matmul(T_s, T_r)
fig = plt.figure()
ax = plt.gca()
xs_comb = []
ys_comb = []
for row in A:
output_row = np.matmul(T, row) + v.T
x, y, i = row
x_comb, y_comb, i_comb = output_row
xs_comb.append(x_comb)
ys_comb.append(y_comb)
i, i_comb = int(i), int(i_comb) # convert float to int for indexing
c, c_comb = color_lut[i], color_lut[i_comb] # these are the same but, its good to be explicit
letter, letter_comb = string.ascii_letters[i], string.ascii_letters[i_comb]
plt.scatter(x, y, color=c)
plt.scatter(x_comb, y_comb, color=c_comb)
plt.text(x + 0.15 , y, f"{letter}")
plt.text(x_comb + 0.15, y_comb, f"{letter_comb}'")
xs_comb.append(xs_comb[0])
ys_comb.append(ys_comb[0])
plt.plot(xs, ys, color="gray", linestyle='dotted')
plt.plot(xs_comb, ys_comb, color="gray", linestyle='dotted')
ax.set_xticks(np.arange(-2.5, 3, 0.5))
ax.set_yticks(np.arange(-2.5, 3, 0.5))
plt.grid()
plt.show()
```
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
(b) Apply the relu function `x'=max(0,x)` to the 4 points after transformation as described in (a).
%% Cell type:code id: tags:
``` python
# create the scaling transformation matrix
T_s = np.array([[1.5, 0, 0], [0, 1.5, 0], [0, 0, 1]])
T_r = np.array([[0.707, 0.707, 0], [-0.707, 0.707, 0], [0, 0, 1]])
v = np.array([0.5, 0.5, 0])
# create combined tranformation matrix
T = np.matmul(T_s, T_r)
fig = plt.figure()
ax = plt.gca()
xs_comb = []
ys_comb = []
for row in A:
output_row = np.matmul(T, row) + v.T
x, y, i = row
x_comb, y_comb, i_comb = output_row
x_comb = max(0,x_comb)
y_comb = max(0,y_comb)
xs_comb.append(x_comb)
ys_comb.append(y_comb)
i, i_comb = int(i), int(i_comb) # convert float to int for indexing
c, c_comb = color_lut[i], color_lut[i_comb] # these are the same but, its good to be explicit
letter, letter_comb = string.ascii_letters[i], string.ascii_letters[i_comb]
plt.scatter(x, y, color=c)
plt.scatter(x_comb, y_comb, color=c_comb)
plt.text(x + 0.15 , y, f"{letter}")
plt.text(x_comb + 0.15, y_comb, f"{letter_comb}'")
xs_comb.append(xs_comb[0])
ys_comb.append(ys_comb[0])
plt.plot(xs, ys, color="gray", linestyle='dotted')
plt.plot(xs_comb, ys_comb, color="gray", linestyle='dotted')
ax.set_xticks(np.arange(-2.5, 3, 0.5))
ax.set_yticks(np.arange(-2.5, 3, 0.5))
plt.grid()
plt.show()
```
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
# Solution to Problem 4 - Using Pandas: Weather
%% Cell type:code id: tags:
``` python
# First import Pandas
import pandas as pd
# load the database using pandas.read_csv
data = pd.read_csv("./data/weather.csv")
data
```
%%%% Output: execute_result
Luzern Basel Chur Zurich
Jan 2 5 -3 4
Feb 5 6 1 0
Mar 10 11 13 8
Apr 16 12 14 17
May 21 23 21 20
Jun 25 21 23 27
%% Cell type:markdown id: tags:
### Viewing Data using Indices:
%% Cell type:code id: tags:
``` python
t_basel = data["Basel"]
t_chur_feb = data.loc["Feb", "Chur"]
print("Temperature in Basel is:\n", t_basel, "\n")
print("Temperature in Chur in February is:\n", t_chur_feb)
```
%%%% Output: stream
Temperature in Basel is:
Jan 5
Feb 6
Mar 11
Apr 12
May 23
Jun 21
Name: Basel, dtype: int64
Temperature in Chur in February is:
1
%% Cell type:markdown id: tags:
### Changing Indices
%% Cell type:code id: tags:
``` python
# Find the name of column 3:
all_columns = data.columns
name_c3 = all_columns[3]
# Oder
name_c3 = data.columns.values[3]
print(name_c3)
# Change "Basel" to "Bern"
data.columns.values[1] = "Bern"
data
```
%%%% Output: stream
Zurich
%%%% Output: execute_result
Luzern Bern Chur Zurich
Jan 2 5 -3 4
Feb 5 6 1 0
Mar 10 11 13 8
Apr 16 12 14 17
May 21 23 21 20
Jun 25 21 23 27
%% Cell type:markdown id: tags:
### .mean() Method:
Now find :
- the average temperature in Chur (for the given Period)
- the average temperature in Spring in Switzerland (spring is Mar, Apr, May, mean of all cities)
%% Cell type:code id: tags:
``` python
t_chur_mean = data.loc[:, "Chur"].mean()
t_spring_mean = data.loc["Mar":"May", :].mean().mean()
# Hint: mean() on a DataFrame gives the result in a Serries. The axis of the function to be applied on can be set with axis={index (0), columns (1)}.
# To find the mean of the whole matrix, the mean method can be applied twice
print("Average temperature in Chur was: {}".format(t_chur_mean))
print("Average temperature in Spring was: {}".format(round(t_spring_mean, 1)))
```
%%%% Output: stream
Average temperature in Chur was: 11.5
Average temperature in Spring was: 15.5
%% Cell type:markdown id: tags:
### .sort_values() Method:
- Sort the data based on the temperature in Zürich
- Sort the data based on decreasing temperature in Basel
%% Cell type:code id: tags:
``` python
data.sort_values("Zurich")
```
%%%% Output: execute_result
Luzern Bern Chur Zurich
Feb 5 6 1 0
Jan 2 5 -3 4
Mar 10 11 13 8
Apr 16 12 14 17
May 21 23 21 20
Jun 25 21 23 27
%% Cell type:code id: tags:
``` python
data.sort_values("Basel", ascending=False)
```
%%%% Output: execute_result
Luzern Bern Chur Zurich
May 21 23 21 20
Jun 25 21 23 27
Apr 16 12 14 17
Mar 10 11 13 8
Feb 5 6 1 0
Jan 2 5 -3 4
%% Cell type:markdown id: tags:
# Solution to Problem 5: Fuel Consumption
%% Cell type:code id: tags:
``` python
# First import Pandas
import pandas as pd
# load the database using pandas.read_csv with options: sep="," and index_col=0
# data = None
data = pd.read_csv("./data/d.fuel.dat")
data
```
%%%% Output: execute_result
X weight mpg type
0 1 2560 33 Small
1 2 2345 33 Small
2 3 1845 37 Small
3 4 2260 32 Small
4 5 2440 32 Small
5 6 2285 26 Small
6 7 2275 33 Small
7 8 2350 28 Small
8 9 2295 25 Small