Skip to content
ML_train_and_predict.ipynb 90.6 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Train ML model to correct predictions of week 3-4 & 5-6\n",
    "\n",
    "This notebook create a Machine Learning `ML_model` to predict weeks 3-4 & 5-6 based on `S2S` weeks 3-4 & 5-6 forecasts and is compared to `CPC` observations for the [`s2s-ai-challenge`](https://s2s-ai-challenge.github.io/)."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Synopsis"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Method: `ML-based mean bias reduction`\n",
    "\n",
    "- calculate the ML-based bias from 2000-2019 deterministic ensemble mean forecast\n",
    "- remove that the ML-based bias from 2020 forecast deterministic ensemble mean forecast"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Data used\n",
    "\n",
    "type: renku datasets\n",
    "\n",
    "Training-input for Machine Learning model:\n",
    "- hindcasts of models:\n",
    "    - ECMWF: `ecmwf_hindcast-input_2000-2019_biweekly_deterministic.zarr`\n",
    "\n",
    "Forecast-input for Machine Learning model:\n",
    "- real-time 2020 forecasts of models:\n",
    "    - ECMWF: `ecmwf_forecast-input_2020_biweekly_deterministic.zarr`\n",
    "\n",
    "Compare Machine Learning model forecast against against ground truth:\n",
    "- `CPC` observations:\n",
    "    - `hindcast-like-observations_biweekly_deterministic.zarr`\n",
    "    - `forecast-like-observations_2020_biweekly_deterministic.zarr`"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Resources used\n",
    "for training\n",
    "\n",
    "- platform: MPI-M supercompute 1 Node\n",
    "- memory: 64 GB\n",
    "- processors: 36 CPU\n",
    "- storage required: 10 GB"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Safeguards\n",
    "\n",
    "All points have to be [x] checked. If not, your submission is invalid.\n",
    "\n",
    "Changes to the code after submissions are not possible, as the `commit` before the `tag` will be reviewed.\n",
    "(Only in exceptions and if previous effort in reproducibility can be found, it may be allowed to improve readability and reproducibility after November 1st 2021.)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Safeguards to prevent [overfitting](https://en.wikipedia.org/wiki/Overfitting?wprov=sfti1) \n",
    "\n",
    "If the organizers suspect overfitting, your contribution can be disqualified.\n",
    "\n",
    "  - [x] We didnt use 2020 observations in training (explicit overfitting and cheating)\n",
    "  - [x] We didnt repeatedly verify my model on 2020 observations and incrementally improved my RPSS (implicit overfitting)\n",
    "  - [x] We provide RPSS scores for the training period with script `print_RPS_per_year`, see in section 6.3 `predict`.\n",
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
    "  - [x] We tried our best to prevent [data leakage](https://en.wikipedia.org/wiki/Leakage_(machine_learning)?wprov=sfti1).\n",
    "  - [x] We honor the `train-validate-test` [split principle](https://en.wikipedia.org/wiki/Training,_validation,_and_test_sets). This means that the hindcast data is split into `train` and `validate`, whereas `test` is withheld.\n",
    "  - [x] We did use `test` explicitly in training or implicitly in incrementally adjusting parameters.\n",
    "  - [x] We considered [cross-validation](https://en.wikipedia.org/wiki/Cross-validation_(statistics))."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Safeguards for Reproducibility\n",
    "Notebook/code must be independently reproducible from scratch by the organizers (after the competition), if not possible: no prize\n",
    "  - [x] All training data is publicly available (no pre-trained private neural networks, as they are not reproducible for us)\n",
    "  - [x] Code is well documented, readable and reproducible.\n",
    "  - [x] Code to reproduce training and predictions should run within a day on the described architecture. If the training takes longer than a day, please justify why this is needed. Please do not submit training piplelines, which take weeks to train."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Todos to improve template\n",
    "\n",
    "This is just a demo.\n",
    "\n",
    "- [ ] use multiple predictor variables and two predicted variables\n",
    "- [ ] for both `lead_time`s in one go\n",
    "- [ ] consider seasonality, for now all `forecast_time` months are mixed\n",
    "- [ ] make probabilistic predictions with `category` dim, for now works deterministic"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Imports"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/opt/conda/lib/python3.8/site-packages/xarray/backends/cfgrib_.py:27: UserWarning: Failed to load cfgrib - most likely there is a problem accessing the ecCodes library. Try `import cfgrib` to get the full error message\n",
      "  warnings.warn(\n"
     ]
    }
   ],
   "source": [
    "from tensorflow.keras.layers import Input, Dense, Flatten\n",
    "from tensorflow.keras.models import Sequential\n",
    "\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "import xarray as xr\n",
    "xr.set_options(display_style='text')\n",
    "import numpy as np\n",
    "\n",
    "from dask.utils import format_bytes\n",
    "import xskillscore as xs"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Get training data\n",
    "\n",
    "preprocessing of input data may be done in separate notebook/script"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Hindcast\n",
    "\n",
    "get weekly initialized hindcasts"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "v='t2m'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[33m\u001b[1mWarning: \u001b[0mRun CLI commands only from project's root directory.\n",
      "\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "# preprocessed as renku dataset\n",
    "!renku storage pull ../data/ecmwf_hindcast-input_2000-2019_biweekly_deterministic.zarr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/opt/conda/lib/python3.8/site-packages/xarray/backends/plugins.py:61: RuntimeWarning: Engine 'cfgrib' loading failed:\n",
      "/opt/conda/lib/python3.8/site-packages/gribapi/_bindings.cpython-38-x86_64-linux-gnu.so: undefined symbol: codes_bufr_key_is_header\n",
      "  warnings.warn(f\"Engine {name!r} loading failed:\\n{ex}\", RuntimeWarning)\n"
     ]
    }
   ],
   "source": [
    "hind_2000_2019 = xr.open_zarr(\"../data/ecmwf_hindcast-input_2000-2019_biweekly_deterministic.zarr\", consolidated=True)#[v]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[33m\u001b[1mWarning: \u001b[0mRun CLI commands only from project's root directory.\n",
      "\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "# preprocessed as renku dataset\n",
    "!renku storage pull ../data/ecmwf_forecast-input_2020_biweekly_deterministic.zarr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "fct_2020 = xr.open_zarr(\"../data/ecmwf_forecast-input_2020_biweekly_deterministic.zarr\", consolidated=True)#[v]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Observations\n",
    "corresponding to hindcasts"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[33m\u001b[1mWarning: \u001b[0mRun CLI commands only from project's root directory.\n",
      "\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "# preprocessed as renku dataset\n",
    "!renku storage pull ../data/hindcast-like-observations_2000-2019_biweekly_deterministic.zarr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "obs_2000_2019 = xr.open_zarr(\"../data/hindcast-like-observations_2000-2019_biweekly_deterministic.zarr\", consolidated=True)#[v]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[33m\u001b[1mWarning: \u001b[0mRun CLI commands only from project's root directory.\n",
      "\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "# preprocessed as renku dataset\n",
    "!renku storage pull ../data/forecast-like-observations_2020_biweekly_deterministic.zarr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "obs_2020 = xr.open_zarr(\"../data/forecast-like-observations_2020_biweekly_deterministic.zarr\", consolidated=True)#[v]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# ML model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "based on [Weatherbench](https://github.com/pangeo-data/WeatherBench/blob/master/quickstart.ipynb)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "fatal: destination path 'WeatherBench' already exists and is not an empty directory.\n"
     ]
    }
   ],
   "source": [
    "# run once only and dont commit\n",
    "!git clone https://github.com/pangeo-data/WeatherBench/"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "sys.path.insert(1, 'WeatherBench')\n",
    "from WeatherBench.src.train_nn import DataGenerator, PeriodicConv2D, create_predictions\n",
    "import tensorflow.keras as keras"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "bs=32\n",
    "\n",
    "import numpy as np\n",
    "class DataGenerator(keras.utils.Sequence):\n",
    "    def __init__(self, fct, verif, lead_time, batch_size=bs, shuffle=True, load=True,\n",
    "                 mean=None, std=None):\n",
    "        \"\"\"\n",
    "        Data generator for WeatherBench data.\n",
    "        Template from https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly\n",
    "\n",
    "        Args:\n",
    "            fct: forecasts from S2S models: xr.DataArray (xr.Dataset doesnt work properly)\n",
    "            verif: observations with same dimensionality (xr.Dataset doesnt work properly)\n",
    "            lead_time: Lead_time as in model\n",
    "            batch_size: Batch size\n",
    "            shuffle: bool. If True, data is shuffled.\n",
    "            load: bool. If True, datadet is loaded into RAM.\n",
    "            mean: If None, compute mean from data.\n",
    "            std: If None, compute standard deviation from data.\n",
    "            \n",
    "        Todo:\n",
    "        - use number in a better way, now uses only ensemble mean forecast\n",
    "        - dont use .sel(lead_time=lead_time) to train over all lead_time at once\n",
    "        - be sensitive with forecast_time, pool a few around the weekofyear given\n",
    "        - use more variables as predictors\n",
    "        - predict more variables\n",
    "        \"\"\"\n",
    "\n",
    "        if isinstance(fct, xr.Dataset):\n",
    "            print('convert fct to array')\n",
    "            fct = fct.to_array().transpose(...,'variable')\n",
    "            self.fct_dataset=True\n",
    "        else:\n",
    "            self.fct_dataset=False\n",
    "            \n",
    "        if isinstance(verif, xr.Dataset):\n",
    "            print('convert verif to array')\n",
    "            verif = verif.to_array().transpose(...,'variable')\n",
    "            self.verif_dataset=True\n",
    "        else:\n",
    "            self.verif_dataset=False\n",
    "        \n",
    "        #self.fct = fct\n",
    "        self.batch_size = batch_size\n",
    "        self.shuffle = shuffle\n",
    "        self.lead_time = lead_time\n",
    "\n",
    "        self.fct_data = fct.transpose('forecast_time', ...).sel(lead_time=lead_time)\n",
    "        self.fct_mean = self.fct_data.mean('forecast_time').compute() if mean is None else mean\n",
    "        self.fct_std = self.fct_data.std('forecast_time').compute() if std is None else std\n",
    "        \n",
    "        self.verif_data = verif.transpose('forecast_time', ...).sel(lead_time=lead_time)\n",
    "        self.verif_mean = self.verif_data.mean('forecast_time').compute() if mean is None else mean\n",
    "        self.verif_std = self.verif_data.std('forecast_time').compute() if std is None else std\n",
    "\n",
    "        # Normalize\n",
    "        self.fct_data = (self.fct_data - self.fct_mean) / self.fct_std\n",
    "        self.verif_data = (self.verif_data - self.verif_mean) / self.verif_std\n",
    "        \n",
    "        self.n_samples = self.fct_data.forecast_time.size\n",
    "        self.forecast_time = self.fct_data.forecast_time\n",
    "\n",
    "        self.on_epoch_end()\n",
    "\n",
    "        # For some weird reason calling .load() earlier messes up the mean and std computations\n",
    "        if load:\n",
    "            # print('Loading data into RAM')\n",
    "            self.fct_data.load()\n",
    "\n",
    "    def __len__(self):\n",
    "        'Denotes the number of batches per epoch'\n",
    "        return int(np.ceil(self.n_samples / self.batch_size))\n",
    "\n",
    "    def __getitem__(self, i):\n",
    "        'Generate one batch of data'\n",
    "        idxs = self.idxs[i * self.batch_size:(i + 1) * self.batch_size]\n",
    "        # got all nan if nans not masked\n",
    "        X = self.fct_data.isel(forecast_time=idxs).fillna(0.).values\n",
    "        y = self.verif_data.isel(forecast_time=idxs).fillna(0.).values\n",
    "        return X, y\n",
    "\n",
    "    def on_epoch_end(self):\n",
    "        'Updates indexes after each epoch'\n",
    "        self.idxs = np.arange(self.n_samples)\n",
    "        if self.shuffle == True:\n",
    "            np.random.shuffle(self.idxs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<pre>&lt;xarray.DataArray &#x27;lead_time&#x27; ()&gt;\n",
       "array(1209600000000000, dtype=&#x27;timedelta64[ns]&#x27;)\n",
       "Coordinates:\n",
       "    lead_time  timedelta64[ns] 14 days\n",
       "Attributes:\n",
       "    comment:  lead_time describes bi-weekly aggregates. The pd.Timedelta corr...</pre>"
      ],
      "text/plain": [
       "<xarray.DataArray 'lead_time' ()>\n",
       "array(1209600000000000, dtype='timedelta64[ns]')\n",
       "Coordinates:\n",
       "    lead_time  timedelta64[ns] 14 days\n",
       "Attributes:\n",
       "    comment:  lead_time describes bi-weekly aggregates. The pd.Timedelta corr..."
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# 2 bi-weekly `lead_time`: week 3-4\n",
    "lead = hind_2000_2019.isel(lead_time=0).lead_time\n",
    "\n",
    "lead"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "# mask, needed?\n",
    "hind_2000_2019 = hind_2000_2019.where(obs_2000_2019.isel(forecast_time=0, lead_time=0,drop=True).notnull())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## data prep: train, valid, test\n",
    "\n",
    "[Use the hindcast period to split train and valid.](https://en.wikipedia.org/wiki/Training,_validation,_and_test_sets) Do not use the 2020 data for testing!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "# time is the forecast_time\n",
    "time_train_start,time_train_end='2000','2017' # train\n",
    "time_valid_start,time_valid_end='2018','2019' # valid\n",
    "time_test = '2020'                            # test"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/opt/conda/lib/python3.8/site-packages/dask/array/numpy_compat.py:39: RuntimeWarning: invalid value encountered in true_divide\n",
      "  x = np.divide(x1, x2, out)\n",
      "/opt/conda/lib/python3.8/site-packages/dask/array/numpy_compat.py:39: RuntimeWarning: invalid value encountered in true_divide\n",
      "  x = np.divide(x1, x2, out)\n",
      "/opt/conda/lib/python3.8/site-packages/dask/array/numpy_compat.py:39: RuntimeWarning: invalid value encountered in true_divide\n",
      "  x = np.divide(x1, x2, out)\n",
      "/opt/conda/lib/python3.8/site-packages/dask/array/numpy_compat.py:39: RuntimeWarning: invalid value encountered in true_divide\n",
      "  x = np.divide(x1, x2, out)\n",
      "/opt/conda/lib/python3.8/site-packages/dask/array/numpy_compat.py:39: RuntimeWarning: invalid value encountered in true_divide\n",
      "  x = np.divide(x1, x2, out)\n"
     ]
    }
   ],
   "source": [
    "dg_train = DataGenerator(\n",
    "    hind_2000_2019.mean('realization').sel(forecast_time=slice(time_train_start,time_train_end))[v],\n",
    "    obs_2000_2019.sel(forecast_time=slice(time_train_start,time_train_end))[v],\n",
    "    lead_time=lead, batch_size=bs, load=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/opt/conda/lib/python3.8/site-packages/dask/array/numpy_compat.py:39: RuntimeWarning: invalid value encountered in true_divide\n",
      "  x = np.divide(x1, x2, out)\n",
      "/opt/conda/lib/python3.8/site-packages/dask/array/numpy_compat.py:39: RuntimeWarning: invalid value encountered in true_divide\n",
      "  x = np.divide(x1, x2, out)\n",
      "/opt/conda/lib/python3.8/site-packages/dask/array/numpy_compat.py:39: RuntimeWarning: invalid value encountered in true_divide\n",
      "  x = np.divide(x1, x2, out)\n",
      "/opt/conda/lib/python3.8/site-packages/dask/array/numpy_compat.py:39: RuntimeWarning: invalid value encountered in true_divide\n",
      "  x = np.divide(x1, x2, out)\n",
      "/opt/conda/lib/python3.8/site-packages/dask/array/numpy_compat.py:39: RuntimeWarning: invalid value encountered in true_divide\n",
      "  x = np.divide(x1, x2, out)\n"
     ]
    }
   ],
   "source": [
    "dg_valid = DataGenerator(\n",
    "    hind_2000_2019.mean('realization').sel(forecast_time=slice(time_valid_start,time_valid_end))[v],\n",
    "    obs_2000_2019.sel(forecast_time=slice(time_valid_start,time_valid_end))[v],\n",
    "    lead_time=lead, batch_size=bs, shuffle=False, load=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "# do not use, delete?\n",
    "dg_test = DataGenerator(\n",
    "    fct_2020.mean('realization').sel(forecast_time=time_test)[v],\n",
    "    obs_2020.sel(forecast_time=time_test)[v],\n",
    "    lead_time=lead, batch_size=bs, load=True, mean=dg_train.fct_mean, std=dg_train.fct_std, shuffle=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "((32, 121, 240), (32, 121, 240))"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "X, y = dg_valid[0]\n",
    "X.shape, y.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.collections.QuadMesh at 0x7f3a7e44b730>"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAELCAYAAAA1AlaNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACgJ0lEQVR4nOydd5gkZbX/P2/Fru6e6Qk7szs7myNRckYBBQFRETFwvQaucBUvXvNVL8rP7MXINYKYMFzFiKCIZERAcl7C5hxmdnLHSu/vj7eqpmd2dmZ2d3Z3dre/zzPPdKiufqu66vue95zvOUdIKamhhhpqqOHAgLa3B1BDDTXUUMOeQ430a6ihhhoOINRIv4YaaqjhAEKN9GuooYYaDiDUSL+GGmqo4QBCjfRrqKGGGg4gTDrSF0KcI4R4SQixXAjxyb09nhpqqKGG/QliMun0hRA6sBQ4C1gPPAr8i5Ty+b06sBpqqKGG/QSTzdI/HlgupVwppXSBG4Dz9/KYaqihhhr2Gxh7ewDD0A6sq3q+HjhhtA9MmTJFzp41a7cOqoYaatg/8MSTT26VUrZM5D4PE/VyERn+KDeJidzv7sJkI/2RTto2/ichxHuA9wDMnDmTBx54YHePq4YaatgP4KTTayZyf28QbbKDCv14E7nb3YrJ5t5ZD8ysej4D2Dh8IynldVLKY6WUx7ZMmbLHBldDDTXUUI0n6OU0mjHQeINomzwB0lEw2Uj/UWChEGKuEMICLgJu3stjqqGGGmrYBm8QbdJAoxmLY8jxBL17e0jjwqRy70gpfSHE+4HbAB34iZRyyV4eVg017Jc45lN3Ylg6AJou0A0NXdcwLB0hBEEQEvohQRACIENJEIQ8dOUZ4/6OQz/8VzRdQzc0DFNHN7Tk+wxLx7INDFMj5ZhkUwZpS8cydHRtqKc3CJUR/b3zD5qIQ58QPEEvJ9AIQDNWYu3/aZL79ieVZHNncMzRR8vJ7tM/67sPUS56WLZBtt4GQNcErh/S21ng/k++YsK+K3fqB+i7/9u0nX8Vuu2w/rcfnLB917Bv4Kgr7sCr+AAEfkjouxiWjWHqpDIWhqmINwhCfHeQ0A1LR9MFYSCplDzKhTIyDNAMi1TGAkDXBz8rQ4lpG+iGQIihPKcbGkIT6LqWbOt7AYEvCX31nWHEPZoQCE1gWNHEEE08AKatY9sGjqXTkLZwLB09+i5dE9jRJGIZGp8+fc6Y58ZJpx+XUh670yc3whtEm3yGfl7NYEy4C5eH6WGtLE1q0p9Ulv7uwodvWYqla9iGRsUPWdNVoHNrkVTaJJ1SpyBt6XTlXf5yyTET/v13vP/ECd/n9tB3/7epP/ly0s3TAZh50XfRDXXDrv7le/bYOGrYeygNlDBt9ZunMhb1jTl8LyDfW6Zr3SZkGCA0HbuugWyDAyhy9b2AMJAUByo8+/Vzhuxz0ft+D0A6V08qY2LrBkEQEvgS31WkHiOUUq0KInKvhozeiyE0NWFomsCrqOeGqWNYGqZt4FZ8PDvATRnomsAyNHRd0Jy1+O9XzJ7wczdeVFv5MfYVa/+AIP2rz1sEwGU3voCuCXRNcNcHT+K1P34cK7IUfvbWw/fmECcU/Q9+b8TXW8/9LB23fpa2868CYNNNtYTnyY4jP3k7gR9uQ8IxFr7nN4S+y4qfvIM5b7+OwHfRDYsXR5jgZ73tGjRNR7ccDCeLaRuEEQEPdJcoDQyw9Jo3JftNNzRgmDpBEJLO1Sf7qZT8QWs9+nwYhIgql4wMJWEoCX236rUAGQTJc6HraIaF0HQ0TVn7OmplIHyBrqvvCPQQKSVBKCm5PnrK3KuEX+3LH45jyPEwPXthVOPHAefe+c4jG/jP49t344h2HNMv+Bq67bDuhvdP6H7rT758mwmg9dzPYqQyCE1PbkjNsJBhkDzf/OdPTeg4ahgbR3z8tsR3DvDcN87lsI/eynPfOBeAgz94Cy9867wRPzvn7dcBaiU34y3fIvRcZKjIVWh68t/K5DBSWUW+YYBuO8k+YrIfjrbzr6J+xmLMVApQ7qLALaEZFrqhJo3ALSXfAxBUSoS+i9D05C8eT/w/RrJNNAHohoEWuXcMU+0zlTFpasnQ1uDgWDp1tsHnz5w3zjM7FBPh3pklHHkCjSOSPsDtdPIy6pms1v4BR/p7C81nXYEMAgK3RN/9356w/daffDmAst5sB91KJTeZDEOEpg258Q1H3fSh56LbDlY6h247hJ6LV+wDJsYN1HL2lQAEnjvE2uu972rqT74cLXI59d539S5/1/6IBZf+KiFOzbDQTCuZqEci6Flvuyb5XUPfTVZxred+FjOtrHQZBliZHGY6h+FkCX2Xl753wS6Pte38q6ibvoDQU79z4JYIfHcI8ccuJcNyhkwAsaUvNB3ddjAsOwn8xvEDoQlsxyDbkOLIec0cMTOHqWm8+eDmHR7rrpK+EOKkuaQfrPblD8dk9+3XSH83IyZl2L7bZUfQfNYVyc1VbTXptpP47jXDRI9uruptNMNC6IM3YWwRxqQSf756khCazoqfvCPZx/x3/2LI8/Fg2uu+RGWgh557v75zB72fYvoFX8PK5NT5NwatRs20kEHAsuveOmT7he/5DUAyica/w6y3XYNuWOiWw/IfvY1Zb7uGoFICwCv203HrZwE1EXulPL33XU3ruZ9FhgFGKpPsf1fcfe0XfhOncRoAbrGPoFJKrr8h11N0/QHosWvHsDAzOYSmE7gldMuhvinNlOl10ecE2ZRBW4PDiXObeOshO5+bMwGk/53X0vr+dpxRt7uZzWyi0iKl3Lqz37W7cED49PcWml75CTTDIvTdcRH+SBNE7KKpfi9GbCUBahWBi6bphD7IULkKqi396glABfKaktfDqveGP499wTE5zX3njwHwynnym1ePaq23nX8VZiaHVdc0hIwCt3TAu5ECt4wXuV2W/+htLLj0VwD4pTwA8y6+Hhj8nYUekWeob7MvGQaU+zsB6F+/dMhvUr2yCn2Xqed9ASOVwSv245cLABipDO0XfhMZBmy88b92+FgGNq1Ixpeqb6FYyuOXCwS+uiYVuZuJgRFDtxzMTA7D1LEdE0gRBCFO1sKI4m2+H+JGMYRdIfwJgmGOI70p2mZS8usBb+lPPe8LwCAhBpEVpRtWYiHtKnKnfgAZBqMS/3BSryb9kRATsG5ayXOrrhErnUvcAL5bwrCcITd89X8AI5VNXD5eoW+b9wPfTaw1M5VNJjEYXBEAVPLdaIaFYTmEvpt8Z3XsoHoy0aqsv+rjiYkjqJR2eEUxUWh4xYeHWN5h5KqYiJXaeNB81hUYloPQNKy6puQ3He4Pl2HAip+8g/YLv8mGP3wEUKsHzbSSyTW23utPvjyxquPfUzOtZNWomRZmZPWHvodupQh9D98t0XXHl8c17vhazU6dQ+i7uIV+/HI++Y2tyJrXLRUfiH9vK50bMhnolkOmPkVDixqPYWnUZSzSlr7LgosJsPSvebNou2yasEfd7uZwC2sotUkpN+/sd+0uHFCkP+11X1JEaTsElcHgU+zaiJ8HVSSllAXqda+UJ4xIUIYhW25RfuvYGm88/WPAIGnqlpOQchi5UwK3NK6xjkX68Q0MYNgOqcapGJaDW+gbErCrthC9Qh9eOR8FzKwhJBIOI5QY1RZ+fOwAmZbpZOpTGKZGpeRT6FeabtO2cEsl6pqUH9l2DPq71TFXCnmCSim5wauDjclYNR3dMBIpn5Qy8e0apj5EIeJ7Ab6n9qHrGlpkGZYLLn70W5X7OhnYtGJMwp7xlm9hpXPJmMxMTo0/k8WruImrwi/ltzuhGU5WPQ6CZPvhqytQ10dQNbHGbrV42zAMkmsuDIPk/cpAd7I60y0n2Zfvlob480Pf28aIGX7tCU3fJrZUHfjf3nUHY7spG0//GE7jVPJbVo/4fnxugcTQSDdP3yMrv4kg/Yu0sUn/T8EWVtdIf/dgvKTfcvaVZKfOAZRbQgZBEhwDdcPphpXccNXEX+lTbrnO29SqICZ3w3aipXcccIpvam+ItRv6Ln6kaBhure0Kqi3t2IqK/bSaYWE62SHbVJOOFvmAYx9rUCklpFBNwGKYRR76Lk5jKwBO1kY3NHw3wI2SgeIknjgBKJWxsGydvq4iXjlIEoDKRQ+35OG7lWT/pm0l0j2hCXw3wLINLEetkqWUBL66XnVDRGNVipKY/AG8ik+5r4tC51qEpuOXC1QGupPzU01auVM/kBCp0HSsukbMVDYh1dj6HK5AiV0u1asiy3HQNKGkikFIGEq0qkkqljDGVrhfzuOV8uS3rI5+NzVppKdMVyum6FqMf6tqt0gMGQaJ/zyeANRvWU62qQyoVVg16e/IqnMkjPb5xtM/hmE7VAa6R92HXddEffsiulc+Pa54z9TzvsCWW66k5ewr0a0URtX1PV7l20SQ/tv06Ze1jUH6fww2s0rWSH+3YDykHysYrCoLA8At9CXLYhgMiA0nyvhmGb4CqLZQh1t18Y2otldZkWF0g8JQF8pEICauMNJC66aFbqXUaiOS5sXjiV0+w10Gw8dUfR6AbfyxmcYctmMkxKsbWqLbjkk/Tr8XmkiyMoUmyPeWt0nxV+OXiVQvJkzTNqJxR9mg/iCZuhUf31XH4JbUuS12bdiGBBpe8eHtumhmXvRd7GxT4vKodu3E44hXGHHCkWGqEgKD50ZLjqP6mHRdI6xarcTvV//33Upipattgm3+69FvVm2oxL9fUCklyqv4Gov35ZcLicERJ+7FqD4X4yH64Z8ZDW3nX0Whc92I78Xj3xkVW9v5VxH6HpWB7kQdtCP7mgjSf5cx/bLpWmrU7X7rbWLFJCX9SRlo2FW0nH1lIlPTI9dHbDHFF8nyH70NGNQ4x3KyarcJMMQCM6Ln1W6JkTTIw6380HPRrRSBW058qHrk+95Ry3/4RBPDj9xVummhpzKRXFMdaxwYjBU+Xlk9j1c78TbxmKuJffixxioRUJmfvqusc83QklothqmTakhFn1cZmJWSRxjIxB1k2QbYUBxQlr5h6xT7+jFTaaSU2CkTzdDQNJFY+qEfRqn9kkrJx/eCwckiCJNzm2nZtr/C8MAmDBLYuhvez+LLb0yOP56ogCGknZuSVjr1quOMUSl7yBCEIRC+muCkkLgVHyklWsqMzqPANAy8io8IBbqpoekOoWXjFgaS/VVb5YHv4pXy2HVNhL47RF/vl5TP3EhllfJl2HWhGR490Qo1xvaIe/jr450IRsJohL8rkuXJkFCoCdDHEGMKwQhF4ScH9jvSb7/wm9i5KckNHAfBqqWK1Trn2JetV7kzQt9NtMbp5vbEOq9OaNGG+WGrH8dZh3EAMDAiaaRpDbGmw0iaF283HgyXYCb+ZV0RcqyQiL+/OnEmqJQIPXdQBaLrQ2Sb20xenruNVelH5yXev1+K5J6WE6XPD10dCE0krhdNF/heiFfx0XUtcQmBcsnIQK0C4oSkY6+8S2VhDqjvMywNAvDdwezPcqG4w1rz4eS26H2/V+cy2mc84YCy8pumZZFS4lUCdYymTqXsYdpGYtXbKVPVlglCDFMjXkFrhpasegDCQOK7AbZjUil5Q0oSxNdWUClR6tlMqWcLqdwUrLom9Vv5rjIWvMFAeuyik0GQyHT1MNiuu2M0wt+emGBnsL3YwETmqOwt6EIk9X+2BzFia5DJgf2O9IWu4zRMG2INDQ+qLbj0V+i2w0vfuwAzsuIDVy2BV/38EuZdfD1GKksq8hka1lD/XUw46oZVWYnDA3YyDBDh0NWFH2UyJjEA3yPARded7Vrw1b70aj97TNzVKhjdSiXHHXruNn7n4RNU9T6BIZ/Vo3hFnEwT72e4n79ayeOFOmFgqJopJdVUIl1vAwZCC5LU/Xgi0DSRkKZpG7gFEsIHeOwLr0oyVQ1T1YYxTJ3HvvCqMa6C8aPt/KvYdNMnmf/uX6DnmpkyvR7TNujarKxuTQh6OtTKKPAltmNQ6K/w5JfPAlQVyfiYsg0phBBYtoHvBbiVAMPUkuJjQOISit1gvhsQSok6jeo93aijfsZislPnqu91S2ANXiPVmdTxRBBDM6wJUz2NlNE90mujYTyB4X0NgslXk35HsN/59NvOv4rcrEMS63zZdW9NdOWglAPVlv6Mt3wLGHRfGJaTBM1i60/Th/7EcbCuunjUSHVGgCEp8YFbwi30DbGoZRgOeT5cRTO8Vkn8XDe3jT3Ek0lMAoFbSvT6oJK2qo+1msyBRH0SJ9kITccv5ZPxxS6patWTDNTqJ14t6IaGEGKwKqMhsFMmf/+vU9lRvPyr/0iqRe5IOd9dxeLLb8SpU3LBuiaHdNaiv7vEPz99+rj3ccLn7qFccKlrchCaQBODMYjhAenAl3gVP4kXxNdVXOIg/s1jiWX1JB6f9xjxRLCjxD+WWmciVwF7Es1nXTFEcjoRPv3/sGdcNlMf3ad/fXkjL4XFSenT3+9IP0ac2LLy+osBlUkap3pXuwPaL/wmoAg1DnDGss5qEhuO6hsTGKLKqLa+RvL3x+6R6qxFZcF52yV+oQ9KR0GVN9BHUHPAoOQvJveY7JP9RYHBeDyGk8XONg1ZHaUyaQAsxyT0Q0IpKRdcdENLAquaEIkaB6BcVO6K6uqK2ysUNhpO+9r9quiWpqzmuz540g7vY1dx4hfuAdRkc+IX7tmpSeeIj99GKmORrrcT48Cr+OrYhCphHIYymdhi+F4w5JqTUiKEWh1Vx4HigG016Q8Pvlfy3eNWtuyoNT7ZiX/6BV8j9F3MTC45BxNB+u9Pzbxs1hik/5PyBl4MJifp73funRhWpGZZ+J7fqJoeTnYb3++st12DGVm3oAJmQWTJmpEFFQ6zqGMkZB1UWenV/np/aNGr4ZI5UBNNbL0PWt0e+C5B7LfV9SHkXq3hhsHYglvow7CVCyCslPDcEmYmp2SoEaeohBs3eT0O/vWtX0quff6QWieBH2JYekJIpm2QbXDQDZEEMIUmKBeUG0fTFUFXSh6l3u4kUL6jOOZTd6IZGqmMuccJ/9AP/xXTNnjqqlcPIfmdXWU8/dWzOfiDtyQWPygJq6pV76lyxm6QuK6qJ0vfU3LV+LeASM1UlRxnONnBmEy0CqguewAqpjX3nT/GK+cJPXensm33ZaRyLYkQY6KgjyeQO6HfOLHYLyz9zYsvY8VP3sH8d/8CM5MbsuTVq6R0MQLfV6QcVLtZBok3DmpW69ZjVOv6w6rPDJd6JtZ7pP8fTvrx5DJc6umX8gRuOSH95HujyUHlBphDYgVWJpe4Xgwni53JokV+c8PUqZSUQibbkKFnw8YoW7KPQuc6GmYdnByXH43PsBzsXAu6YSTnKx5jnHQFqvqhaRuUCy5aVAfdrShlThykjScOIcS43SOnfe3+nXIHTVbEfv8lV7+GIz95O4apk6m3I19+gO+FQxqReJXBpDOv4icxo+HKsdj96JWLALgD3ZhRgtnw0hvVRkkQrUo3/OEjE+Zrn0xW/3GfuRvfC3jyy2cx623XUN82J3lvxTUX7rKl/9HMzMvm6KPX3rmmuIHn/ULN0t9dWPGTd7D48huTyoFBpTQYlPS3lVUmgciq4k/Vipdq8h6+fK5+P5bHhZGqZXjBsnhSiEsZhFU3bfVKQeh6MmY9iinEE0Q8AfnlApo16Duvn7EYoenkpig3TCptUeivUC64WLZBKCWWoZFKm4llXi66tM6biVvyKeYrKjM5qr8ejwnUqsF3S1jpXFJGN9aIF/rLyURaLrqqc5KuDWnCEUqZbAPKUj7hc/eM+/fcnwgfFNnHeOqqV3PcZ+5ONPq2Y2LZMpksAbINKcpFtRpQVn4ImoGmK3djvPry3QohYKbS+G4FM51LVo9DjJMqtQ+o4L80Ldov/CapXEuy3c4kEG6vLtTexKOfe2XyWDcsfNeb0P3rjEe9M3mxX5D+4stvBAabNFQrTKotI1Ak6kYZikLfVmOfKCSigJkZVUEERsxYVSqdod+ZELamE0bb+5FeP8YQ5UsYSUUjiaTQ9SRVPf5MffsiQt/FK+cxLAfTVi3snKxSFg10lwgClSClGRp+yaOuyaHQX0ncNqm0he8NuhAMy8Gqa8KwzCErocpA72DNdNuh1LNZrWRcHa/QN7iKsh0C34kKZSl3j1fxhxBYDLfic8yn7uTxL525Yz/ufohHP/dKTvny3wF1znRDw3KM5JxVSkrSatk6YKnMZS+gUshT19SAiM635ZhJwlu1fNcv5beJKRU61iauzGoFWFxlM3DLGAzKiKtjUMOzmHdUwbM3sernlwCDFUonAuPS6U/Yt0089gvSj7MSq+uPFzrXAlEhsnRuiOtDb5yStGiLpXR9G9ehWw5OQxNhEFIu5RNCHAyqOYnlHU8M1fr2GHokr4PB2ijVKphqRY0aY1Xyk+0M8dnHyVBmJodX6CM7dS5C03FLJTRN0B/5e9M5W1nwAxVMe1AWmc5aVEpRv9QgJKyE0es2pS6XSl8nFaBp5uxEPhmGuUSZk9+8CruuCRkG2LmWpKYNKHLxCn0YZjvlQjk5/5bjJJNI7I/uXb82uQFrgAeuOI1Tvvx3ZCgxbJ2UYybNv23HwLTjHrFGIhM17fokPwBUVrCmiUQiO5gNnUvyBHxXFdKLSz2AKoim207U30GVa0jclJqOsAYNkjjEHJce6bn360MIPy5OF5dGgMnVhCcm+1jiPBGokf4kQGyJaoZF79oXaJxz2GAxssgl4pXzKnW7cVrSrCEMlFULqoBYsWtLksofV54MfD1J2ok7Fx38wVsSN0ucWFUdxI0LYMGg7DFwy8kSujp4DKAZGey6pqRkQrXvNvSi1YYmSLVOpVwok87ahNJC1zXyvao0rlNnkUqblAsubmTlx0XI3EpUfkHTCYWgNDBAZaCX7NSZyYQWSwkBKn2deFF1xHgcVpQNGh8TQH7Laqy6RgY2r8VIZZOJ1fcCvIra9sXvvD46xpGVRgcyHrjiNM79waPohkY2ZSSkP7s5Q1/Jo9Tg01v0cN0AXdfwvYBi3h1sVSgEhmOoXs9ZC98LKBe8qBDdoGFhZnK0HnIKA5uWUxnooZLvwYiux+EGSyz9jY0ZK5NLSoiAIvnq7ObJ3gQn7kkw/92/mLB9mkJgaaPT+hhv71XsF6Qfei6FjnWkclNI5aYkcksYtGDW3fB+Zl70XdxiH2aVPz0uOeCVy4krR4ZBQlYw2BQ6VgINIfwqxUSpZzBmIzRVr96PVDSqhk8ZJz0YCNVMKyn9AINuoWo9fjz5oBk4WYuGlgx9XUXSWYu6JicpP1voL+N7AQ0tGQxLTwKppXxlSB0cgGzDNIIgjMoh6LgVlSgVf6Z+2nQqUXKVl+5L4iSxS8qN6rz4bgkzrFdxgSiuITQdd6B7m+5be6tM8mSHZem0NThkbYN0lM1c8UMsQ8MyrOi/Tm+9zZbOIpqhYUclHYIgVKtVIRCayv61HBOv4jMQVTYNQ6km72BQEmxYTnKtVrvq4mtO+G4kXza3ERWYTpaWs69Mig/uK4ivP+eG9+7yvsaXkTt5sV+QvgwDMq0zEwKtTr6Km0XPvOi7CfHHvnG9yg862D1KwysPVc6M1J4uTt0Xmo7T2Erg+4n6xYysXquuCTtW6OSCIdLMGHEBLcMyCfyQSl8nMgxwk5Kz7aTqc1i2kWSwZhtSyY2flBY2NOUqsJQM0HcD0nW2qvUSuQq8iioTEMrBomiaoWFHssB0Ng5EC5yshVcJGIis92p1k4yqJ5qpTFL7JX6vku9m/W8/uM35ihuolHq20H33V3b0J95vMa81S2udPcTSL7kBQV7SkDaZ1pDjyTW9pC2due11DJT9pKGI64fomsCPnutGSGnAxasEOHVxtVOdSlkjDmWmclOQYZgYN8MTveLALig//75G7jHazr8Kv1xIxh+375wIjLv2ziTFfkH6ViZHEJVQiBFn2q7/7QeZedF3k6JjcZLGgkt/NaQuTbm/k0zLLGQox1XLZek1b2LR+36vLCdTR9M10s2q4XocSPMKfYn0sW/DMuraFiBDVXM+RpzkJUOJZRtMOWQ+5YJHpl4FaEt5F8NUCVHVMr44OBtb707WSsr5OnUWTp2F7w6NHdiOkWjCk6SyQCVTGaae+PR9N0jGZVh2Yi2Cqn8er46cxmmUejYPqVQ6HNMv+BoyDCZFoazJiNnNURKcodHkRHXz/YCmrIWlawRSomuCQ9tVYH/Jhj668oqosykD29DwQ0nJDSiWVG6FGQyWmlYF6jQCw8JM10eB2XBIzwe13WAviVg8sK+2t5z2ui9RP2MxuuWw+PIbKfVspmH2YQDk/7Hr+ze1sd07tdo7uxkjNfI2quqRxEQ/4y3fws42JcXUAOzIsklIrVxkwaW/GlJHPZ1TPnjfDSj390VuGRvdcrAzWQY6NpFunpro2kPTwiv0Je4QPZWiec5BUdDYTILHWpRlGRBSGegndLJ0rushlUmhG4PjDyOFhu2o1YCdU0lSmq4l8QahCcKoRk28IjAsDaGpmvOgKkACaLqG0GTiJzZtXZVGDrRkXPnecuLuCdwSS695Ewd/8JYhvXQ108LN94z622y88b9oeuUnRv8BD2AEoZLW6prAjibwtKlhGzqhlAy4yrJ3LJ0glOQci42R60aPy0v7YbJKEELlSySBdG1QlZXKteCV8/ilPJmWmUOarVSrybr2UbKPsfnPn+LQD/9VlU8xHVKZeeS3dkzY/jUY270zeTl//yD9kTB8Iph50Xe3W4xq3sXXs/L6i5nxlm+x/rcfZPHlNybVKC3HYaBD9R51Gpqob2lOZHaGqYKklj2DVGZQD79uSQeB72Klc1iOg25oONnBEsSglt1xvRVNE4SNDuWiR645TbYhlWix6xodZrVlWbW+HyFUUa9YppeL3DFHzGzAMjRyaRPXD9ncW8aPbvrF0+qSpagXSh5e2c2KDX3IEKShasD4no8MJZWycgL0bS3iDnQny//4XMaB7Bhz3n5dUsJ6e2g8/WP7rMW4J/DRk2fys2c62JqvJG6betvANnQCKUmbOmcsVobJAyu6WDg1S11K3bYdAxW68hV0TahJwzYAVeYhvs70yBAIQ4nR1EIYNOOVi0Oa5sToW790v/ut3FIpElKMr2PdeKCJwVpK28Mk5vz9g/TbL/zmYEA28oVXV4LceON/jVp/JK7PE/uiq9078YQASrWjGxqmYaDpSu6ZyphJE49YStd+yHy8io/vKt18Kq3871rkd4eq2vCGqi/vVXycrEW2IUVz1mJrtF19nYEeNSCZ0urQnLXJOSaGJpjfmmVrXmXbHtSapaPgUm8bBPU2rh+ysrPA6q0FOqKa9TMaHVrrbJYUPXRdQ0otGbtKFiIa22DNdhkEQ3qwDsfwxjQwtIbLSCUsahiKXEol08VEommCih8QSPDCkLSpU/FDjprVgCYEnf3q98yXPXRNEIQyIf5KZei+4980jvlIGTWmyeQwI2UOqGxeu65xzxzwHsCSq19D7tQPbFPK2Ul/aJf3rZkaujV6nU0xhvtnb2K/IH0ZKi2ymcmRbm7HLfYlxc/KUavDnUVM+KAmFMtuxjA1bEe5aWzHIPBDvEqQWOdxFmzse4+bgMTVOePH5YKHH4ZR+V2TctFj9fMdbE5byUXT3KYsu4VzGli9SZX77S26BKGkEgXyAHrqPA5pybK16JK1DZ5Y24sVWXvx0n9aLsXariKXnrOYn96xDN9VEkDdEKopSTQBaIalrMMoRrA9wu9e+fR2S+fuK8k7kwFvWNTEb57fShAF2ItekLgPUrqGF0gCKekreliGRiVaEeTSFiXXj1xEOgNlL4kPJbLO2O0TGQ5CCMyUiiMEvp/47wPfnVT6+olA07wjWPS+3zOwcfmQYoK7CqEJhD5WceUa6e9WVNfLSZp4e4ONPiYKuu1gVWWf6rqG74ZJgLQUBdjKRY/6RofAUSUKBoOmIWEgsaLleRycjRU38X5kKBMlzZa1fUNqya9Z1UMqo1xFvQOD2bZrugoUFrfQEKl6dE3Q0V8mCCW9RTWu3z60ltXPdzDnkFZ8T2m/44YfccVMIKn/7ruKDA7+4C3buHZgkNjbzr9K5UhMcs32ZMZbD5nC9x/bCMCMnMOmgTK6JtCkoOwHbO4tYxmaaioTBWmVekdD1yBrG5RcZXTohkYQx2e8EAwNEU0EcS5GXH/KLw8VOOwvWHDprzBSWZXDYzuJETgRELpA7MPZWfsF6eu2k9TICdySao0YuXtMJ0vzWVeo7FnTGlJbO1b4wGC5g5GqEMb1+O1ci/LLR1aT4QyWXXZSRuJjL7kBxYJLOmPh+yG5rIXrh1TcQHVbiqywTJ2F7ajiZEU/BAT53iKptEW5qPzrqbTJ1o39OFmbcsGlv6uI74WJe8iOVhFuxWfJhn4uOrqdm57dTOdAmc0dBT5w2nw+f8sLAGxe05vU6omRqVdZlF7KpxC5DXRbEUbohxiWiVsssOh9vx9Ruqq282qEPwH4j2OnJ49/+vQWnlnfx+zmdLJSGyj7lLwgee76AY5lqMlAqpWfKnpX1UYysvxjxZYQAonq/bC933Nfx2EfvZXALdG1/Aka5ijVzkRb+toYpF8L5O4BqNr3VlLcLEk00XSISs9qmk7DKz6Mlclt0yhdpJV6Yd7F1w+qbiwHu66BbKuSYlq2gWFqOFkb09aHKGeCSDYH0N1ZYFpbHSU3oC5tUnIDLEMjnTIouYMB2LSl09FfQYsahcdWfqXkJfVsAh9MW6fYX6F7Qwe67TDQnSeVSUFAIrMUmsD1Q0IJ3YUKq9b3I0PJ8535qvR8HTtl0tORV+4bqZpzx60LE1WRrmq9O3UWQgjKtkH/5u0XC9xyy8RpoGtQsA2Nq89bxIdvWUpbTk3Ma7oKNKStxG0HRuLX16Pf362o+FBcegMg31tIkg3nvP06vFJ+iB5/f0Ndo4MQ7di5FoJKCb88WAJlIqAbGro5eqxqPD59IcRPgNcCHVLKw0Z4XwDfAl4DFIGLpZRP7MyYq7FfkH7cjCSoymyN69tohomRyuCXVbkCu64JI5VJKkzG7RKrG6InbiLToti1KanN3zS1JSknHN9osU89vukA/vHxl3PSF+9l3nz1uSCUFMuqEJntmMl2+fLQG9St+Gi6RiY3tD1jKa+qWda3NBMEIYEfkt+6FRkG1LVOBVQxtbtvX8KLK7uVZt8P6esq8qXv3EUqpwJ0LTNyvOqo6Ty9rpd1q3uYMr0er+JHfn0tce9k6m1KAy6WYyQrm4FaQHaP4m2HtvCjpzZz9XmLuOL2FQShJF9W/vvmqMheLPccKPvYhkah4HLH+08cdb+xEqvl7CuZ8/brRpQ77wvYXtG3Y6+8K3ksohW/QXZC3bxoE+beuR74LvDz7bx/LrAw+jsBuCb6v0vYL0g/bhrtlwtJdmisw49r7xipTFQjR7lN9CgGUF2N04h64kJ0wWiCTGMu6Yd61BV3kMqYOJaeEL4R9z6tKiV81ncfSmrHn/nth+jtLOBVfFpm5CKSH5oYle8tE4aSVMZKmpTEloJh6jhZO6pn46P5GroeYrQqSy0Ovg70lMi1NkX7V8eYqbfJNc9K9PZTpqRZ2JpViT+HT6Ov6LG+p8Sm3hIlN0gyO9Mpg5ktGYpuwNaeEltWbtjppig17DzyZZ//uW8NX371fM774WMYhkbvQIWGdFQ6QRMMlAPyZZ880LG+f9z7rgx0JwXS9kUMJ/zms65g+hGvSMqK64bKYakMq6I7ERC6NiGBXCnlfUKIOaNscj7wc6kCMQ8JIRqEEG1Syk3jH+222C9IX5VB9vCjYI0fFQvLTp1DqWdL0ngEwKprTBqGVAd+DSeLYdlJgDbWOduOwUlfvBfLNhLyf+PPnqS1PoVTtcQLpHLvlFyfujqbc659JAnCZhtS3PvRU0Y9hkM//FdSGTXGWO45a4FaKbh+GAVy00Na64WhVBd2SRG9aeuUBlyyDSnS9TZnHKpWAR39FWZPSVOfMjliWh1ZS2fTgMtD63porbNprbMZKPsYmmAg2v+m3hKrlnfz8GfOAE5gztuvA0ZOhKth9+BDJ84A4N//sIRb/n2w78fZ33+Y3s4i6XqbUr5C4Esy9XZyfY4Hw0mz6ZWfoPvur+xTZZNjnHrVfcw85nRkKJPCgV65vE3wdqKIXzMEujmWZBOAtwshLqp6+Top5XU78FXtwLqq5+uj12qkryx2LSF3K6MShgJXVbRUXbDKQ2rgm6nsYCVOJ6uyYCOyVyWXVXajZRuJ/j6uB//sA0tZ+MZjACh5iuiLbkBfcWizhinT6/A9Rdgv/+o/CP2QB644bcRjWHL1a5h38fW0HzIfJ6t6qnZvLXLCoVNZ31MkCA1a61P0FV38UHLc3CYsQ6M7UgwNlH1e3NTPyq0dNLdmOHF+M/cs2cLC6fW01tn0FT3yZZ9/SompCf74xAZOWTiFgbJPXZTOH+v5n3h28zZdrmpkv/fwwwsPHfJcaILGqRkK/RVKAy5zDm7BdcdPaNNe9yWKXRuHvBYT/b5G+Ad/8BZgsLlRdTe6+K+66u1EQNM0le07CiKBxy+llLuS7TbScmGXWx3uF6TvFvuTqoAwNCFIPTaTWvVxCQFVK99OJJixXFJ9RmXcxfr6ujrlQ9WjMgbLrnsr33hwHY6ls2RDP71FL1FUJN8bhe9DP0xa4nWv2zDqcay8/mJO/MI9/OPjL+e8Hz4GqGBv2tLpyrts6i0xryVL2tKZ15xhWWeeT58+Z5v9vPt3z7FkQx//evJsvFBldQJkLZ3WjE0uZbC6q8ijq7q54V+P2HYg5x806jhr2LvI96oa+Km0xYyFzTRnLXqLHkd+8naeuurV22zfdv5VuMV+gkqJ3vuuHlGPH+dZxJ2w9gXyn3fx9UPIXIYBVl1T1CcgqjIalT2PhR0TATFxPv2xsB6YWfV8BrBxO9uOG3uN9IUQq4EBIAB8KeWxQogm4DfAHGA18BYp5ejFXYgbjaSSCyC26mHQnRM3Arfr6hP5o2UbpKOgqWWrLNukTo0G6YyFrokk7T0OwIJKn//ivatZODVLyfWThJl4OyllYuUDlAvuuMoLx024D5vZAEDRDSi6AUfPbuSFTf0cMr2eUErW9BT56MkzR9zHT958GPes6efw1gxLu0vMitQfs8wSUhMI6TGtIZVMGG/82ZP88V1HjTm2GiYH4rLJueY0QhPMbs5w9013bLcBeKlnC6Hvjkrk1e9Vt0CczOS/demjpJsHZa5mJoc70E0YBmhVnezirnQTBZWRO4Z6Z2I0mzcD7xdC3IAK4Pbtqj8f9r6lf4aUsjpl9pPAXVLKq4QQn4yej1mtK275Vu2uSd6znCE9XmPNsu2Y1DU5TJ+mto0JPQglblTPvDlr0ZQZVNJkUyZHXXFH4jv9/d+W8vlLjuPFTQMU3SCZHAbKflI6QYaS1U8u2WH3yCsWNAOwsrtIW0OKTb1lmrM2XhjSnXf5+KmzRv38F/+0hD9ffiKnmRuRniL9cOnT6POOws9N55KjshAl6oyH8PcV6+9AwNNfPTt5fMTHb+Mr5x/GsZ99M1+76XmOvfIuutasTtpt9q19YVzKleEkP/y3noyTQP+D30tybULPpdi1kVT9FEBZknGuzkS6dmDiLH0hxK+B04EpQoj1wGcAE0BKeS3wV5RcczlKsvlvOz/qQext0h+O81EnAeBnwL2Mg/TjmvRxgwirrmlIEEdoOoaTTfzzpq2TrrM5dnELM5pU0saarUV0TVDyAvJlj1zaojlj0d7oJDVR/rmii39/46EJ8a+87yZWvuEQTpjXxD+WdpKLVBVbekpsXt3LxqcfpOPWzwKjB3FHgm0oS+KV86Zw98qttNbbrOkq8qfHN/CXS44Z8/OvO2EmnSWfTdZcFq6+Q52neUexSp+GUQzJ2YJ7Vvdy3oLx1VvRrYlLbqlh4hBPAJdc8yDN0+qYPaMe/WVTyUaZ2bf+ORjS3Gd7GIvMJxPZx5h+wdeSx0LTSTdPJ6iUkgzcWJ03kdm4QCJjHg3jsfSllP8yxvsSmPCu83uT9CVwuxBCAj+IotpT4+WLlHKTEKJ1PDtqnnMQvhck/vlywR2iuTdTKUxbNZ52shaZeptj5jZx0twm+iO1yswGRe4dhQrdeZcZjQ5tWZuXTc3SnFJBm7cd3kp67WP8x5deBagb4XN3r6IxIvvuqPjZ8seWRxLHbf2r48WZc1QwOkRQ9Bp5aWueB5ZtHRfhw6DyA0CbdYj6X+xh1rRp5EOdho7neINe5DcvLuCNBzWPuq/hdXVqmHyI3YLD0XT1T8hOnYPQ9CG/42Qk8R3FBRe/jgcfVuIWw9RJZUwy9TZbNwxQiZrJh76LH/W7BuidiC8eT+2dWkbuiDhFSrkxIvY7hBAvjveDQoj3AO8BmDlzJq1NDqm0RfvUDFv7KxT6K0lzEbfiE/oh02fmSFs6s5szHN6e48QZOeZ66wnq2wDQVz7Cimkn4gaRqwjBvEYLect32fTPpwHoX7uVJ+9azTsf/iln/VUVR4uVNsvuuXHwRnrr4RN1jrDXPArWIZSDkC0bxq/DHoKt6sY4/GcVHvri4TR0L6Xy7AOEpQJHnH70mB+Pfbw1F8++h7hLmdGzliufDPjGp/ef0slHzW7gmjNVvkqX0UjJD9nQ77IpX+GBFV088NRGTjlyOks29FEuKGXd6gn4Xn08VTYncR2GvUb6UsqN0f8OIcSNwPHAljj5QAjRBozY+SBaFVwHcMzRR8ufXnYi3UUPTQhaMib3r+nhqXWqxHJ3ocK0nENbQ4pTZjdSZxssNgfgpVvZdOttDKxVX9F82BzmXbwIzR+g8shtSLfM5sdfYtXtL7EqSnpZmnc5IpfiiQ98iiPe+y26t+SrpI1n7pbz5M0+ltYBjz//bSMdq8depo+IKDv58S+pMd5SmMrxZ7yHwv+7hPvn9TC/YfQFVUz2NeLfd+E3zuIzr4RvjHP76t98sv7elx45jfIN/wNAy9GnEsw9lvZWA6YIXj1vPsbZC5DAks4SmyI58gMT0cBNH4+lXyP9IRBCZABNSjkQPX418HlUtPpdwFXR/5vGs78tZ57Joter0hUbHl5JzyObmA2ceHgLL7v0DJxTLsPoXkP54d/hF0vc9/Vb2bQlzwNd1b6+Z+ETfx7zu+7bWuQ1bziBTy77IcUv3wSnfIK/z7+QB1ervrE//8Nz9K9/adQWgjuK6VkTy9BYdt1bd+rz/kGnRTkG6vmr5+ZoO/8qNt30U941js/HN/0FH7wMgFO+/HdWPvzPWgvEfRDVpbCHl8Xuf/B7yLt+wuF/VavfU6+6j3c/dTd/nKVcihc9dD1+8xzecMNy7vzBjybFZGBd9N8A+MB3Wo5gRcHl3WfPY9pRszEyKdb9/UV6V/biANOOHJe3eExo+3jBNRGXWt2jXyrEPODG6KkB/EpK+SUhRDPwW2AWsBZ4s5Sye7R9HXP00fI/15R4qHtosKYlagZ+zrHT2bSsG8fSSU9x6NgwwD2dxQk5jtdMy7I87/KmNU9wzT/Xcv31dwPQtfyJ3XZDtJx95Q43q/7TUnUK37CoaYc+N9zK6ygF/OJJJRP+3MeumhQ3fQ07DykEIrr/D/3wX1n38C1865r/x3V/foETvvy+IduePVW5PU/84Ol8+2WX88e/LWXV/TdPqmvgptnHbPfePizqOf2f/Usfl1IeO+JG44AQ4ppfn3vKZS+bMroA4n13P8J9GzrapJQ7uTzffdgrlr6UciWwTVaQlLILeNWO7u+i9U8Q5zp/KH0wAJlo+XXzIxvo8yIN/Q7UJhkNc9Imq4seT/SWefslRyMl3HDT83QtVwXwdueN8C/vf/sOfyYm+8/dvYpvfPrrOz2+VkfnY8dNQZoOH51EN3sNOwdRZfAtufo11J98Cx983+eBbat6vTSgZJ8n6xqfn7KUa196kqZ5RwzpLLe3cf6axzmfQQ6IMT1l8Fx/ZeQP7QT2YHLWbsFkk2zuMt7/tkNJNWZINSud8pJfP86Ny5Sl22LrNJo601IG920tcmKTk1wMugBH19hc9re77xiro3ILm8s+v/zxE3zqHXfy8Xcfy7+N0GhkovHt1y0e97a3rujlh/evSnT4a7oK4/pctcpjuLUvzZp0c3/GtT/8LGtf/kqGm6fxNX/lnEv4r7nz2fIZl3Cgl1P/OZuzvvsQm1f3JomImiZYcvVr9vDIB/G/xRdYfumbWPCj32/z3g/S6RE+sWOYqIJrewv7HekP/6EX9l9CyzUP01kJKAWSMxY1UNxa4pRmRV6vaq8DoL/o8cLAjmftHVxn4W9axYtyPhwxddcPYAJx7vwG/rkqx6L3qXOy9Jo38fsd7HUymZbvNex+pLZj+Hzy46pmlLX0B2TO+yZLv/8zbr1pGV996gEeWdfLrZpIalRVFwXcWxiJ8CcKQgiENpZ6Z7d9/S5jvyP94Wh71Slc1lBHUHZZc+9Sbnh4A6+b28iMqWkaZueSZVpqZS/3PLVlzP29ZlqWh7pLzM+YTK+3mX78dMTZl/GV3X0gO4nPnzmPVx+kAlhz3/lj5r3i/G2s9+kXfI38ltVJAtbisy5k2T1/HjOT86D/vDlpzlHDvo36ky/n6SO38q2jTx3y+kXHtHHwW44ld+SRAJiLjqHyt+/RetQCsresYHFzmme3DPCql7WxvkfF1bryFc659hH+dtnxe/ow9gg000C3xqDOWmP0vQehabS8+tXge4RhyEXAlIOaKWwpEAYSgqj1XMHjjJY03W7I033l7e4v74d0uwGNps6xx09n8c/+uIeOZOexMMo6TjVOY9OzD2/zftO8w0jlWih0Kj3/9y87kYv7y6x7WFUw3J5s78P/dtxuHHUNEwHtiT8THv267b5/+yolbe799CFsvOcRdJHcEhzdkGLmKbNpPus8CouUpf9ib4XF572fnFfm0nd+mId6yizZ0E9rnZ2UGk9bOltDyUlfvHebaq37A8bTGL2m098L6PySavTc/m/vpevmX5Oe1ozdkOWYj5zP1ideQDMNQs8niErSzn/1AjRTnY6LTzuO1Tfdw7euf2ab/d63VakDFmTNfYLwAdb2qbjFP792Lq/6nL1NK7fnvnEu7/7dc5x96GsB+Mbdy2iZkWPJ1YNEb/SspftX36f+8quS117cNAC0YfSu571/z5NzTL786vm7/4BqGDdGI3yAsztUp6n8pi3Uz2njXa+ex0uPbaLJMWmc18C0Ew8jnP0yrGhF7AWST966jNZ6m9uf2ohh6hTzLpl6m3mtgzWvMhmLMJS89sePE/ghL/zjyf2mPLfQtDHdOzWf/l5Ay6e+C0Dndz5O3ezpuH0DmJkUwk5RP7cNI5Oi8cjDkIUqRY+mozdPQz/oBMxTLuXqC39O9+PP8IXP3pZsMtMxWVfyOHfVY3v6kHYax7UNBq9OPH4Ga7YWePlX/8HTf7oBzbDove9qlq3qwYrq/QwUPb7yL0cmn8nf+1VE99qE8Au+MgWvPm8RwivhN8zguhNf4rrN6qZfsrXCoVOURK7w4/9H7g0X4zfPG3FsT2xRk+jRU3c9wFbDjqPls8qwWfUmKHb24pd8mhyTGSe1Y9fbBGUXK/ATpY8XJfrd91Jn0vFt3TNPM/NlR5Ctqkbr+iG2Y+J7qkl720GLOPKTt7PhyX9QGVDCin01XiRMA80yR99mErt39opOfyJxzNFHywceeGDM7fI//DS9S9cx54ovELz4MMK06H/yUUDN3KnmHJXXfoQVPRWmpA2mZkz6KmoV8MIrVF2TzZvydLsBOVPjzet2uT/xXseeyLbU+zYiQh/viTvRTzwfseIxxKxD8RtmsP6/VGrYjK/9bLeOoYaR8c+TTwfgqn//JreeY1N6+G8YU2fhrl9JuasPM+NQ/8rX409RE/YqN8XTm/Pc9vwWXlzdQ/eWPAC6ruHUWdQ3KjdiOmXQP1Bh64YBzJTq5hYEIZWB/iROZDhZ/FKewC3xx2+8fY9N+k46vcs6/Zveed5lR04fvbH8xb+7k3tWrK/p9PcmSh29yCDEb5iBNasHd/rh5A46mTCtkiw2lwV1gKkLthZ92l+6ldYZiym2LOLU76ns2gc+cDX3PbWFaan947Rt/cAM3Bv+B3vuYg79rUN+y2Bntolaipfrp+P0rMacuZCeX3yDusWLyD/8D7L//sURyd7oXQ+bV+AfNHKHsRomDic9eC93LTqBD/zP+/APvwLzNZeBDEkdXsbxK4ieDQTZFrpFhpIXYmkQSsnqjjy9HQVaZ9TT313CsHRSaTOxbl0/RGgCp85KCiGWCy6aaVHq3cy5bz0z2e7sw6Zx7Ia7CKeO7oaaTBDa2JLNyWvnH0CkP7C2g1RzHdrjfyZYeBy9Hvh6E0Q5G+Ug5IHlvbxyXiP1d17DptMvY0ZxFfbTf2X9H28GoK4ti/NsB1Pt/eO0xSnsEnhueDYOYG14Grf9CMyOpXgvPQYvfxuPbipy2G2qpK1z8WfG/A5TgOjbQlAcoO6yL6vXNn1pu9v7DTOgQVUIXZ/3mZHdP871ZMWrlqrAfvbkyyn/fh6PGAs4qHkK6aBIb3o6Oc3D9yRLo5IlfWWfI2Y3MnNKhiAMWemFGKZqH5g0DHJDCv1ldENDhpDOWuiGwKu4GJZDzlFVaT9y2lxmdzzO6l/8kfYxYg+TCcLQk/jfdjGJ3TsHzB3Vs7KXhS+bh97YQgg0WBr9bsiTm1XC0pS0xUkzczzfWeSIV/8HMzuew2tdhGamEfqfAGh/+UFc0phi81Mj1oHb7+C2q6Rpr3URtC4CovjAOMi+Gt7coTOK/TbVru/Ft7+Bg375p+1+rkb4ew73ZJZReuR2jjvRoKgdTF+YpuAGOGkbIwxpi1qGzqhPUWfpPL95gIdWdDFjWpaNnQXcioeMWobqhoYRdZZKpU0sx8D3Ahpa6zjpnIP43xOVP9x/5Jcs/9MdzP7W/+2dg95JiFrBtX0Dx9xxO9amJXQ0H4wfSEQ5pK8SYEaqhPmNFilN0pZOo5V7CZ0c4pnbYeHxFDapwNO0U4+m6bhjmdfXtTcPZdJBf+Y2gp4OjMNO2W7Alr//Ak4b2i5yNMKvYc/imDtup/7kyylevxUntR69YSa5oB+RL2MbFo05lcQohcZCW+PXYZaBsk/a0mnK2vQVXbZEvXvdio+ua8hQYtoGuqGxeGEzXXmXb5+axXvsbwAUV6/e5wgfxunembycf+CQvvH83aybcxp6ILlvTS+nzWnEMQSHt6pCUiVf4pghWn4rUjcJXnwYjns9+rqnaD1qAQBuVxd0KcJ//rxzOOqWv434XZs/exnTPnvtnjmwSYCug85CA5rya9Ge+ivrf/sHpn/5x0O20TL1hCN/vIZJgv4HvwddKwleegSrcRXu0qcQpok5+2C0+sFifdJyuGhhO2cvaGJZVxldg3tWdBFElv5AWcd1Qiolj6MXTKEuZXDY9Hq25Cto5f5E7tj51DIye+VIdw1CV+6s0TeavKx/wJD+0vaX88x6lYjSmrUZcAPqLD1xvVm6gMBDpurQBrbAwSchn78Xv1RIZnVrahuy0E9+3WamLN42el+MpIwv/v4Zpn12jxzWXoEIVZq93rcR/7n7aTz5TQivhLQy4HvbED6AtuAYKr/7Cuabx+x+OSoePOE0Tn7477u0jxq2jx8ediGX3nYV7vJnQNPQsg2Unn0IPTOowddzzZhzS0zJ99LS1EbgNJI7ZBqHt6lub3e91EnJC5jR6HDavGZm5mwMTfD31b3Ins1suE39fnO+8+u9coy7Ck0f26dfS87ay3jhX87n8O9eTW7WHNb1V0gZGkFkdsbF8oQQqpuyDAnq29CKPWjT5qIVekg1LwMgv2w5dkMdZsZh5jd/key/4EvqSx2Ur1PFGEqFHa/hsy/A+91XsF/7HkXugAhczIVHIVc8TNh+CIQB+pxD4bGbCI89H4Bl776QhT/5A6JnA8XNXeR2cQwnP/x3fj79KN658cld3FMNI+HfNj1JAFgzDyZc9TR6+yLyLz5P/zMrkm2aD50LhoV2yClIKdEqA0yrbyJnq4mhLWvzfGeeQ1qyHOkMEKZMVhUEF80MEV0Z6ue07aWjmxjUfPr7CMI1S5iW20z9vJMBsEIXqYHSrkT/dRNR7EGLLFn32fvpfOAxMu1TALAb6hLFSzXqwiLBU3ex4haV6LIvJW7tCKwLPkRJs0mFkeSpr4NgoBdv9QuETz+IOWUqsq6RcKAH/49K4TPv9Scj7/oJlUqJzqdXsvSVZ3Lc3Xfu0jjGIvwPpQ/mf4sv7NJ3HOjwG2fxmTnn8qWHv0/9CS8neIeqeC5/8EkqvQNkZy7EfeJ2jJZ2AOrsOnKeUvi0ySJHzG2hU1hQ8dD7N7NAhrgP/hmvv5/swgV77bgmAkKMJyN38uKAIP2Df30T9xxxCoe85SgaFv0D3baRja0IKwWAMWUa0vPw1i3FmHcoQU8n/ua1+Pk8Zn2a7iWrAIZY99WQmoG7YQ1HvOdVPPzVW7Z5/56DT+SMFx7afQe4m5D/4afJLliASNeD7yLDEL1zAx7g9RcpbO5iYO0Wyj1lAjeg1FPGK3gEXoAe1WGx623MrEm62aHS7yJDyb2HnYxuabz8ift3aDz/PPl0Tnrw3jG3qxH+xOBzfUuQ+U7CZ+8l9/gf0A8+iaXPrUZPmXiFn1LpzVPq6EVPmRiOhWYqVU7D/HbCIKBpzhzCVJqV/3cj5Z4yXct6MBxFOSf+4+69eGS7BlVwbayM3Mk7KRwQpA9w2tMP0P2Nj9C/ahOGY2F1K/++0DVYugSrsQEt14y/eS0Dzz9HpSeP4VgEZRc9ZW13vxuvuIS2M05kxU0PcfCvb+LlI6wE9jXC/37rEbz9M+eSaW8hLBUItm6h3NWH0DXKXapsRWFTF6WuAsWtJSr9FQI3xCu4eFEWsxYtb8NAUoomBacxRaY1Q6oxRaWvwt+POIXTnh47mzrGeAi/honFhq9fSeuxh6Jl6vCfvJO+9f04jSkG1i+lZ1UvRsrArrfRLZ0w8pn2Lt9Cw4KpdDz+EsWtJQIvoGdlL5u6SnRWAv6z8+m9fFS7hvEVXNtDg9kJHDCkD1Du6sMrlJFhiFWXxsw4yOhCtXsHsBt6AUhPnUJ+w1Y6nlyF0AWlHiVFmz7CPqd/+cdsvOIS6mfvWCvCyYycqbHpkaVMOzZMLBZ3oIjbXyAou5R7Vb0ct+BhOAZuwUPTJZqlY+kagRugRzrtwAswqzKYGxe0EJRdil2FxOqrYXLip21H8boPvpye51fQdNShAGi6RnFria1Lu3m+v4IuBAdHq7l4dVfaWmLrS0rl9tLGPFsqPp/qeW6vHcdEY1wF1yYx6x9Qd507UMQruISBpNJfwa4vYtWpmh9hlyJ/qy6Dly9gN2QJ3ICnH9rAv24Y3Ye8/sHVHH/vXbt9/HsKj/aUmftiF2bKwMzYOK2NpJqVMqMShpgZtfIRmqBvTT+hG+CVfUI3QOjaEDLX9MHWckLXCMoudkOk+Q5Cnn696rDUs7KX0597cE8eZg1jwNJgYO0WWo5ayPM//DMAgRvwwrMdlAJJIJUQYmPJoykIcaKJXtMFgRuyruhx6ean9uIR7CaMQ6c/mUl/8jqedgPmfOfXVPoq9K3pwy/5lLYW8QplvMJg/XzNMpBBSOj6VPrdMQkf2K8IH9SNXNxaomdlL31reih39UW+W+W3NTMpzEyK+lmtNC1sxI6aTodRIXatqn9odSKLpgsCz8crlvDLLrqlY6QMjJSBbh1Ql+I+gXmzldbKzAxtkenoGroQFIKQUhDS50X/yz59ZZ9y2WdrxacvKsuwv0GLyjCM9jceyaYQ4hwhxEtCiOVCiE+O8P7pQog+IcRT0d//m4jxH1CWPsDSRzcxrS1L35o+7Ho7ISqvUMEvlBCaRmFzN7ppJD7KAw3fKLzAT9uOQl/fjzMlTeCFNC+GullTqZ/ThozK6xY2dOIOFMhOz1LqKeOXfFXUrhQm1n48AchAErgBQvMSl1oYyGS7aUdOrlaTNahmQ0bK4sUbHmBgo6qoWemv0BnFbdxQktE1HF1QCiQ5U/3WpeieKof7dgXf7UG5d/QxNhqd9IUQOvA94CxgPfCoEOJmKeXzwzb9h5TytTs/2m1xwJH+G9c+zu3zjiOQkgZdoEUWZkxETksZM5NiYO2WXZYW7svodgOs/gpT3ZDQDQjcAKsuQ6q5HrtRuWeclkZKXf1YmTJ107NousAteIk7J0boBsiUgV/y0S2dck8ZoQsq/S6pRqWgcvPeHj/GGkZH4AaUe4sUthTwo7653SUPRxdsLvu4oWSr6+NJnUBKVqtQD24oyRoan+x+di+OfjdC09XfqBjT0j8eWC6lXAkghLgBOB8YTvoTjgOO9EEVhOoreaQLXuKaMLMWmq5R6uwhv6nvgK8Ls66kSLizEtDu+rSWfTY9thorYyaro2xbHe6AUuakGlPK2t9aQugCGW1jOEb0mZBSTxnd0vHKPjKQCF2gm2rSXfyzm/fOgdawXVT6XXRTxWiCyFXTaBlYfoAb6oSo9qFuKOl2B105uoAv9i/ZS6PeA9B1hDm6ZHMcVTbbgXVVz9cDI9S65SQhxNPARuBjUspdPrEHJOn3lX10IfBLPj0rewEodBRw8x7dJW+/aJAyEdhSUdZdvx/S7YZM6y1zT2dxVB38P44+lb7uMm60tHfCkFLBxclYGJGKR7d0AjcgPSXN1pdUMbt9O11n/0TgBlT6KxS3lpKYS+O8BjIFl6ayT66zSGclSH7rvK9Wy1/N73Zjde9i/Jb+24UQF1W9eJ2U8rrqDYZhuD/sCWC2lDIvhHgN8Cdg4U6MeAgOSNJ/49rH9/YQJj22R+znj/G5lz9x/5CM2E/XH4obSpzuElMsA11Au2PQ2l7H2kc3AruewVzLwJ143DT7GHQhmH5Qc+KCk0FIsUv5cEq9Kis7Z2rjEjvsV9C0sUlf+fR/KaX8+na2WA/MrHo+A2XNJ5BS9lc9/qsQ4vtCiClSyq07M+wYNclEDROOagL+Yv8S3FDS54WsKLiJ2+jJ5T2cu+qxCSlZ8b/FF/hQ+uBd3k8NCt9ofhl9XkiuKUWlv4KZMpKYl5EyEJqGbmhYmsCaxM1CdheEbiAMc/S/sdU7jwILhRBzhRAWcBEwxMcphJgmoh0JIY5H8fUu13U/IC39GvYs9oQVnjU0fjTtSID9Uxu+B/HRrmf4fusR+CU/eS2W3foln8ALkIHk/DUH6IpZjNvS3y6klL4Q4v3AbYAO/ERKuUQIcVn0/rXAm4D3CSF8oARcJCegqXmN9GvYL5D3wxrZTxA+nj2ERVmLMJBJnoWski/LQHLmikf24gj3LsaVkTuOLrlSyr8Cfx322rVVj78LfHdnxjgaaqRfwx5F7IaZKOv/49lDmJ4yaj79CYYbyiTHQtMFYeQJPvWxe/fiqCYJxu/Tn5So+fRr2KOYSHL+atPhTE8ZfGjrMxO2zxoU4UeKW0X4gZoANH3yEtmehNBNhGmN+jeZSb9m6dewx7GrxP+h9MFko0Dix/fXBKC9iBZbx9IEhmOoInoZky0v1fpCJ9A09TcaaqRfQw0Ti7wf1lw6uwHfaTmCmY6prH03RGj+Pl37frdgPO6dcfj09xZqpF/DPoca2e9edLsBs9Im6SkOuqnzxDlnU47Ki9f6Ew9KNkfdZhJLWWukX0MNNSRwdMHc+pTqeJYxOeqWv+3tIU0+iHEUXJvEln4tkFtDDTUkuHTzU6oiqhdQ2lrirkUjlYM5wBGXYRjtbxL79GukX0MNNQzBmSseQQaSfGeR9BRn7A8caBBiMJi7vb8D1dIXQvxECNEhhHiu6rUmIcQdQohl0f/Gqvf+O2oo8JIQ4uzdObYaaqhh+zj9uQd59cpH6d2U5875x+/t4UwqCGMcks1J7NPf3Zb+9cA5w177JHCXlHIhcFf0HCHEIaj6E4dGn/l+1Gighhpq2Es4d9VjB3T27YiI1Tuj/R2olr6U8j6ge9jL5wM/ix7/DHhD1es3SCkrUspVwHJUo4EaaqihhkmDuAzDaH+T2ae/N9Q7U6WUmwCklJuEEK3R6+3AQ1XbrY9eq6GGGmqYPNAM0MdoolIj/XFhPE0F1IZCvAd4D8DMmTNH2qSGGmqoYfdAaOpv9I32yFB2BntDvbNFCNEGEP3viF4fs6lADCnldVLKY6WUx7ZMmbJbB1tDDTXUUA0pBFJoo/5NZuyN0d0MvCt6/C7gpqrXLxJC2EKIuai2YLUIUg011DC5IMYRyD1Q3TtCiF8DpwNThBDrgc8AVwG/FUJcAqwF3gwQNRD4LaobvA9cLqUMRtxxDTXUUMPeQq3g2vYhpfyX7bz1qu1s/yXgS7tvRDXUUEMNuwbJ5HfhjIbJFMitoYYaapj8EGKfDuSOi/SFEDlUwlQ7SlGzEbhNStm7+4ZWQw011DAJoelKtjkaJrF7Z8w1ihDincATKN98GsgAZwCPR+/VUEMNNRw4GEO5o1w/k5f0x2Ppfwo4ZrhVH9XMeRj4+W4YVw011FDDJMV4dPqTF+MhfcHISVIhk3k6q6GGGmrYHdjHG6OPh/S/BDwhhLgdWBe9Ngs4C/jC7hpYDTXUUMNkRJycNeo2k9geHnONIqX8GXAs8HegArjAvcCxUsrrd+fgaqihhhomHcQYtfQ1bVL7QMal3pFS9gA3jLaNEOKfUsqTJmRUNdRQQw2TFeNR70zi/lQTqdNPTeC+aqihhhomJ8ZTcG0SW/oTOR2NWBGzhhpqqGF/wvgKro3N+kKIc6IugcuFEJ8c4X0hhPh29P4zQoijJ2L8k3cNUkMNNdQwKaENWvvb+xsDUVfA7wHnAocA/xJ1D6zGuajCkwtRpeSvmaDRTxgm8YKmhhpqqGGCMJ52iWNLNo8HlkspV0opXVTM9Pxh25wP/FwqPAQ0xGXpdwU77NMXQtRXf05KGbdDfMeuDqaGGmqoYbJjfDXzxyT9dgYl8KD6iZwwjm3agU3jGOZ2MW7SF0K8F/g8UGLQfy+BeQBSyud2ZSA11FBDDfsGxlNwDYC3CyEuqnp+nZTyusGdbIPhcdFxdxPcEeyIpf8x4FAp5dZd/dIaaqihhn0VEkE4hiUfJWf9Ukr59e1sMp5OgePuJrgj2BGf/gqguKtfWEMNNdSwLyNEEsrR/+TYBvmjwEIhxFwhhAVchOoeWI2bgXdGKp4TgT4p5S65dmDHLP3/Bh4UQjyMyswFQEr5gV0dRA011FDDvgLJrvtYpJS+EOL9wG2ADvwk6h54WfT+tcBfgdcAy1EG97/t4tcCO0b6PwDuBp5FFVuroYYa9mFMv+BrGE4WAMNy0C0HK1OH5Zik0iaZ+hT1OZu2BofWOhuA9iaHS4+ctkPfoz93B9L3wPeQngvhsC6okeJFmCbCSiESFcygI0LoOt78k3ftgCcIUkI4AVlJUsq/ooi9+rVrqx5L4PJd/6ah2BHS96WUH5noARwo+H93rgTg82fO28sjqeFAQP3Jiiv6H/xe8lyReg7NMBGajgwD/FIeAK/QB4DQdHTbwUxlMTM5nLoMf7zq1SN+x6+WdNKWtWmrs2lyDJpSqvKkVelDK/aglQeQpQFlIYYBMgiGVqcMg0HC1/VtK1eGkW0Zkb+54sEhb0vPI8z3qk2PHa523H0IQgjGYH05iVNVd4T07xFCvAf4M0PdO93b/8jkwM3Lenj9wkYAvvHgOnRN8KETZwzZ5pfPdvD2w1t32xj2BtlfduMLQ55fe8HBe3wMNewd5Gap33ruO3+Mmckx++TX8ezXz+HYK+8iCEK8io9XLhNUSgCEvkvouwCs/uV7trvfIz95O9mGFNmGFM25FPNbshzUVsfhrXVkTEXOtltC9G3B7+lAVspDLHsZhsMsfQ9hmEiswRruWgja0NVAwqFhiAwDwiNfswtnZ9cxFqdPYs7fIdJ/W/T/v6teSySbkxkx4QM4lk69PXjYf3yxC2C3Ev7eQo3k9w90lAJanZHrt5/7g0e59b3HJc+P+dSdPP6lM1l3w/u32TZ+76gr7sAwdQwzg8ykAQhDybNfP2fI9kd8/DYMU1eByciylaEk31um0F+hxy6wfn0/j66wOWhGjuPmqPvsuPYmGqe1EExV+9EF2IZGnSHR+zejdSvpedC1GRlNOvguMtQhCECPjlUbqjORnoc84Y07cOZ2D0Imxr2ztyDkZF6HjAPHHH20fOCBB/b2MHYZZ3//YW77j+G5GROPi/7vaXRNyc2CUHLDvx7B+T99giCU/OWSY3b799cwMszNL+BNGzpJ6wNbCOqm7vC+jrriDp788lnj2var968F4OOnztruNpff9CIrNvUD0LOlwMOfOYO286+i0LluyHZ2XRMATvN0nMZpOHUZnKyF7ZiYto7tmDRnLWY3ZwA4qK2OhU0ZZuVspqZ19P7N6PlOwnwv0i2rOAAo15DnIcsFOG3XckCddPpxKeWxO/t5IcQ1f73r3suOOmb0Xbz9LRdy1+23tUkpN+/sd+0ujGnpCyFeKaW8Wwgx4hQrpfzjxA9r/8SpV92Hrmv8/b9O3ea9iSD8Yz51J5qhoWkja4iFBrquoRkauq5hOwbn/uBRZJUlt6ewpya5fQXDCR8gqJuKVujCz0xB2wGHQe/6tcnjE79wD3PmNXHGwa0c155jdi7FFCtEG+hAq+T5+KmLxtzf984/aJvXNt00WB8sjh9UBrqT/72rnyOVayE7dQ6ZKdNI19lYjke+t8yGLQUAHl3RRS5rMaMxzcJpWRY1Z1g85WDaWwOMrtVQ7AVQLiKAugbkc3cQHDa+CW13Qcpx+OwnsS09HvfOK1CqndehDkUM+18j/VFw3Gfu5tHPvRKA+z/5ilG3PemL9wIQBuqKefgzZyTvHfSfNyPDgJe+d0HyvBqh7xJUSnjlPF6hD82wVHAMFZyL/2tVwTLNsHAaW8k2OGi64KQv3ouUksCX6IbATplYjoFlG4hoIvEqPgD53jKVkk8QhGNala/61j8RQkS9J2olmqrxm+e3ognBmw9uTl772TMdpAyNAdfnhze9wEt33Uzou/Q/+D0aT/8YAD33Ds35Oe1r92M5Bne8/0Q++aFBf/dDV6prSCv1oPetwUsdDA//CWmayHQ9RvcmRFMbXusiHt1U5EM/fZQHrjhth46hOlhcjXJfJ+W+TrYuVc/TzdNJN7cDoFuO+kxLM+vrLJ5cZuJkLea1ZjlxXhNnz18IOWj1OtG61yErJfyDdmxcuwvhONQ7k5jzx3bvCCE+yrZkT/QYKeU3d+cAx8JEuXeq1Q7zLr6elddfvMv73BEc+uG/Evg+7kA3lYFuNvxBCaVazr4SACOVwXCyGJaDZlgABG4psa7cYj9+KY+MgmS65WDXNaJbTkL+oIg/ngTMVJb6adNIpU00TSTEDsp3K6LXDFMn9EN8L8D3lKKiUvII/BApJUIILNvAcgx0Q0NoAl1X/ljd0ND0kYm++jsNU8cyNCxDS5QRv3vHkbt+YncCtyzvoRgdZ9ELKLg+rh9uE/zfnVh8+Y2UejbTu1pVN9Eth1RuCnZdE1bkRll6zZu2+Vz3Nz6CXyhjZFR7i6aPDt6et6/qY3lXgSUb+lndkaevq0hvp7K61z96exLIrUZM6ONB9T00fAKIoVsOjXMOA8BpbMVyTCzbwLR1MvU2Jyxq4d3Hz2SBp1xHcsMygpedPe4xjIWJcO/cdPs9lx05hnvn4osu5J47bt833TtANvq/GDgOuAlF/K8D7ttN49qt2N4F6TROY97F1wNK9WCksui2k5DkC986b8LGsPA9vyFwS/huibW/eh9LrlbW2dTzvpAQNyhrXEQBraBSIvRcZBgQuGV8tzRUaldF8JqmE/oegVtOJgnNMNEMC9120KP/bslDhhLD1BMC1jSBpgt0TSBDSbng4lUCvIpPGEpiQ0EINSHELiO1QgkxrKp96SIhdxlKwojQ9cjFFG9nGRq6JghCia6p737tjx8f+vtYOq31KXRN8O3XLQbgw7csxdLVZ42qfX369Dk7/Js8uCFPxQ/RhMDU45VNyObeMr0lj8tufAHL0HBMnbSlE4QSPzoeIxpzEMpEqfVsZ5nfPb2RjoFKEkc5fm4TZT9gyYZ+VmwewK34GKaOVwm48wMnJmMp9Wxm7a/ex/QLvoZfLqBbqSEulZHQ/71PDpL833+hxtW1Er9ZjefVc3O8em6O+g98SW0/hNDPBba9N+pPvnzcxF+93faIP3BLbF36KKBiAJmWmZjpXHLNf/MtR7KosBS/Ybra/ohzEJMs7ijZz907UsrPAUSN0Y+WUg5Ezz8L/G63jm43YPiFGAefrKxSHrjFPoSmk2mZhWlbhEFI4CuXxqL3/Z7QcwlcpThY9fNLAJj2ui+x+c+fSvbZ8IoPI8MAGQYITcdwspipDDIM8aPPAuiGhdB0pr3uS8gwVC4azx1imftuCcManHgGLfkURiqD06gCfaHnRrI7L9kmiCy3INJi66aFmdYJfTcZnzvQrfTbdU3Yjqm2G0LiStkRBCFCE2iQTELxdpom1DZ+SBgKykUviRGYtkEqo6y52MWjGxpCqM/E6+Sip8YshEA3NGT0nYEfIiO5duCH1KUMcmmLj/11GZahUWcb6JrAsfSEWAG+88gGHEvH1DTe9bKxlVm3LO/BCyVeIPHCkI4BpUre1Fum5AWUXB/HMhLCj1ckxaIKNnaWXIpugOuHnPuDRyn2V1jx6ONU+rYy5aATaZ8/6L45qK2OeS0Z5rVkkkkE4IrbVwDwxMou2g9RPv6NN/4XZ1z9IJl6lRz1vw+t56jpOQDqbJ3WjMVs2YVYt4SmV52Lj1L7/G9FJTLd/f01rH/2z5R6ttB1x5e3a/DAUIKv3q768XgmgNG+A6Bp3hEAtB20iIaWDE31Ng1pK4kduByabDvZCB9ARqUWRt1mD41lZ7Ajks1ZqKboMVxgzoSOZjei8fSPIcMg8SXKMEAzLDpv+0KyTe7UD2A4WVL1UxjYuBxQmYDrf/vBEffZcvaVdN72BYpdG7d7ocswwCv0JRb5EGRyGNF4qq32eCygLH0vCBC6nkwSoEhfM62h/nrTIqiUBieGEcYTE35s/VfvM4bQBKEf4gVDE69jIg/8MHluagKq/P1uxSf03ap9prBsHV8EibsIwLINjCpXTlDlPopdS5om1GrCUpNMU71NS12KupRBNmXgWDoZU8fUNbwgxIv3JSW6EPzbEVP544td3Lysh5ShkbV0Kn7IGbPrhxzXLct7OG+BmvRvXtaDjYZer8apa4LuvEvR1GlIm8nkomsC1w+HTDS9xQLd3SV6Owp0rHiR/vVLSeVamH1wC68/VrmGuvMuKzsL5Mtqssg5Fs1Zi2zK4PhI8jivValbfvlsBwAXv2oBq7cW+MCfX0q+F2Buc4YghJLTSLnlZDQhKG4q8o27l/HQrQ8D0Ld+qdK1++6YVvv2fPMjvbcjbp/hcKPrPFOf4rj5zePOYfnE35bzlXMW7PT3ThQmogzD3sSOkP4vgEeEEDeijvkC4Ge7ZVQTjJazryT0XXTLwXSyyDCg3Ne5jQ9zewQ90oUevzaWVRPDSGUxbAc7NyUhRL+Uj0g4TMg/qJSGjCt+LDSd0FNkWh2g1W31uZi87WxTkm2ZWPPR8XjF/ui9MCECva4JzbQIfZfSgPouw7JJpZXUzq34eBUfUdUUIowmA7dUodjrJudOZXKmMEwn2VZogkrJp1zw0AwNw9SwIz+u+pxM9qkbGrqhCF4IMRgvsHTmtSov44wmB8fSSekapq5hagJD15RLJrK+3nrIlOT733jQoIW9PcSED2BGhJ6OrO962yBfl6LiB2iaQBcimWC68y4DZbUK7C5UKJbVeUrnbFrnH0TTrIU0tGQ4Yk4TDfEqKiLtfNljoOzTlXdZ2cmQyUPXBNe++XCypsamvM/dq7p5bkMfy5Z0sOWFJ3CLSj6ZaZlJy9yFNLRmKA5U2PD8C0kMYCQMd7nsrL9+LIzm0we1etkZfOWcBbz7d8/xhiPbydkGy7oLO1wSYiKgMnJH32YyTwo7pNOPejS+PHp6n5Tyyd0yqh3A9gK5c9/5Y2DQgi73bSX0XTTDove+q5PtxkvauwrNsDCdLGZ60MrUTEv52A0L3y1t10UTB2jjIGxs1ZtRcBdUUFaGAb5bQmg6ZiqL4WSRQYBfVu4dt9BH4JYS0ldxgFTi44/dQWYqi2ZYyfji86Ybiqhjv3zglpI0/ngVFcdAbEe5I7INKYJg0EWTrreZ2pqhtT6VEB9AyQ3QNYFlaKQtHccykuezm9NJ7ZcYuhCYmsA2FPkPOddCcOacodb8eHDrit7kcbxPXUAgYUN/mfuXdfLUM1vQDcGU6fXIUDInmowWTs1ScgPWdBVZtamffG+ZIAixUyZCE5i2mkQacmqlAtBb9CiWPHw3pFL2cEt+9JuHyWpLMzQy9XZ0DiU9W/L0bVgGQK59IdPnNzG9JcPZh01joOLzx4fWsn5ZF1uXqnjIlluu3OHzEGPa675EuW/rkPtlRzDaimFvYSICub+99e7LXnb06Dkt7/3XN/P3O/fdQG4CKeUTwBO7aSwTgoP+82byW1YlZKRHhaR02xmSar6nEfoulYFu5ZaJXCuxhDImaWkp0pbhsIJUjVORQZBMCF4pj5nKIDQ9SaOP95fs17AwU2kC309WBmYmR7FrQxIMjv/ifejRuCAi9HJekX+0igh8hrhu9KpYQ+xWciM1Uegrv7PlmKSzVpIb0NioSK/k+gyUffKRT1xKSSBUIDRW7Xzsr8v4+msWAsrtAoqEK35I0Qso+9BX8fm3I3Y8gakav3y2g6xtYOuDweSOgvLpD0QS1WfW9fHUM1so5SvIUFIacDFMne4t6jrL2jN4xYJmzlzYwqMbevnz4xvo6YgnRJmonorRJNfW4NAbxT5sx0A3xBD3WV9HN8WuDZipLK0vP4LXH9NOS9piQ3+Zvz7ZAsBz9zxM1/Ined5yWLHqWE45cjrvfeUC+k6Zw78dseNlClrP/SxzTzyNY49s43vnHzQkTrUzGMvi31cxHp3+JAxFJNjvMnKnnvcFQt/Fj4gsdnUEVQFUGNvi2B0Xa2ztD4eRygzR1WuGlejpYwKPH+u2kmwGbgkZBJT7OwGS1YCSajYllroMgmQSif35MYavDIb79uOxxC6kOBcg3k4zLXTLQdMEvqtIMvTcaOWg7AnTNsjU21iOmfjqFQkGmLaRSDullNz1wZN28QzvOm5e1kNX0WVDj7peugouJTdISlq86lv/HHWcJ37hHkzboH9rkb6Na7BzLaRzWbTIPRYEIZ3LnmNg0wrmn/4GZi1sJggllZJHOZoAfTeg2F8hv7UjcUMKTcdpnIYMA0o9ynisDPQMigVsJymkNpbKZ3uoP/lypiw6jnlHH0SmzsL3Q2759502iiclJsLS//Utd192+FGjW/rve8eb+cddk9PS3+9If3sYzScZB7j2hFWSaVGNcGLyjn35oe8ShkFS4jYm5zjoWm1hV5NtDK9cTCx4oQ0qdHTLQTPVpCEDNfnFRB5b+fG+Y1dRHOyOYTsmtmNSLrhUSorcq1cY8ViVy0mtLuK4yIqf7Hja/HGfuZv6JodUWvnB91XiGX5dmZkcVroezbCom76A3JQ6QMlabcdMEt98L8St+NQ3Opx21HQOb89R8QNePqeRnsgF9Ok/P8/Sx1Ylk308gVe7CAE6bv3sDo15+gVfo9i1ccwV8d5204wXC9/zG/JbVgEqi3giSP//brlrTNK//B1vmbSkv8ON0fcVDE8U2d5FuqMB2V1BvOqIH8eJVsNvWFEeTLIKPTex2CEifMNKcgji7fxSnlLP5kgeOmi1q4QuRZ6+6yX7MCybwPfxS3nKfZ0YTnZQ0TOM9AM/pFLycCNSAhJ3Wby/oFKi1LOZ/kLfLrkF2i/8Jk7jNAa6s+Sm1A3JSt7XEF9z8XmtFglopoXtLGTTs/+kacHRtMxsxIyC24YpMUwNt+KTTRm8tGWAe57exNUdBYQmKBfVeY+FAGEUlI/3G+dsABz+sb8xdVYDnev76Nu4ZtQKmsd95m7qZyxGtx28Qh+BW07Gb6SUokiGAfktq3dIv7834UUS7J0NHo+EA6EMwz6N4Rfn3vIxaoZFKjdl0JqOrPfQd3ELfXjF/kSjH3pD1TsxaZhOFs0wCaKgq+mrmuegshvTzVOpDPSTqs9hWDrlQrT/YhygTSNDS93QFeUicgt9g5ZiFPANfRcvelydIxD6LmY6N0Q9tE38ASWPHV4mYLzY8IeP0H7hN9GLDi9+5307tY/JhpGEA31rX6BvrSp9vfHx2yh2HZbEoey6Jppnz8Gr+Pzm1qVJjkToh5QGBpLtfLeEmcqiA5V8NzIIklVdql75/Vtn5pSrZmqW0kAT7Rd+E79c2CbA23L2lehWKnke526AulYzLSpZavZBLRTzLs/97dbkeCYb+bee+1k0w2Tznz+VTHJxZvtEYHw6/cnL+vsd6Y9E6nszmCQ0HbuuKbmhYp+4G/m+AZVdWykNcb3ExB9LK61MbojP3bAc5S/OKlWLZqgCasb0+kT2GIaS0FfKEIDAl3gVg1QmTaG7i8BXq4hM66ykbg+AX+xLCCR2EVW7mYgM/nhsYRgkAWmh6ZhOluazrkjGGU9sffd/e1znLHBLSRmK/Q3bcyNWSy3zW1aT37Iap3k6VjqHZlq4A93q2qhy/WmajlvsS9RW6ant2I5Nsbc3mZj7u0vke8sUo2QzK5PDyuRY9L7fDynj4JXyiXvRqmvEaZyGnVEGipQqYxugt7NAob+CbqWoP/ly5r3ifL7/2Eb+49jpu+eE7QSMSOQQo/msK4a4I3cVfpTENxoms9d8t5K+EOInwGuBDinlYdFrnwX+HeiMNrsiahuGEOK/gUuAAPiAlPK2Hfm+yagUMCLrfNBHH1Lu2xg9Dsi0zFTZtf6gPx4YctHKMFDEirLAMq2zcOrqMEydIBIMp3M26axFX1cx0dsLTSRlbQFMW+CWPPo3r0eGAalcy5BAsVtUrgflJw4RbonAsPBKefxyIZoAUslkFVv6cfA2KQ9RlSDmei499359h36bXVWN7A+oDHQThgG9hcHJwMzksLODOQWGk0WP1FWmpifBc8PJJvEer+KrWkiGRjpXj9naRCpjousar/rWP3Gy6rd/5SXvxPVDejsLlAZcgiBE1zVCKRno6Ex+z/xWncAtYWZyZDSdp7bTVWtvYrgrZ8TEyF1AICXBAZKRuzO4Hvgu8PNhr18tpRyy/hdCHILqCH8oMB24UwixSEq5rf9gGCYj2cdQwdPykPIK1S6RwC2TapxK4JYTV46ZyiT+VD+qKusV+kg3T6e+bR6arpHKWHRv6CDTpEggTnYKfEnfxjWAmiD8xinUNSqSTtfZZBtSGOZs+ju78Ap9VAa6lR/XcrDSylUUxxZkGFDJ9+CX8snEUO7rTMZuZnKJvt+Mksyq3UQ1jIztZb7G5zj2zw8nqzgmEPvrHQZzPeyccucUurtU3CedST5nOwZeOcByDAxLTwqc+a6K1QDMaM8xUPYoOWZSMC9eMY5VRbX5rCvouuPLO3Mq9giq3U9O+qe7vD/VI7fm3hkRUsr7hBBzxrn5+cANUsoKsEoIsRw4Hvjn7hofkPjEt2cNJC6NMRBr2WEwO1WLrOjq5bg/bJlZ7utMXDsweMPXt6s653WtU5MbMy5xnMqYFPoqWJm6ZD/dW/Jk6m36OroHdfqZHLquJRrx/u4SoR+S7x1ISN2okpDGPlzNsPDLeQqd64acF9PJoplW8ppX6MMDUrkWArecVPysRnzDTTa/72RANfmnci1DJtTREF8r+S2rybTMRGSbIiI3MMyhGchx2YtK2cOps9CEwDA10o6JnhEMFNT1tm6rChKn0iaaLhJ3zq3vPY5zrn2EDcvVbzu8u1bruZ/FK/RRf/LltBykCsbtjGJrd2KijcKae2fn8H4hxDuBx4CPSil7gHbgoapt1kev7TZUq1ScxmmU+zqHWOHbS1uP6+JApGywHYxUJvlssWtjFHS11DI9IvLYah+O0HdJRZZaua+TKYuOxk4pxU2+dwBQpRHCUBJG+vZUxsIwtUTbXRoo4bsBU+dOxXen4FUCDEsbUj7BsHSKfRXMVAozlcJ3vSSIG/puEkeIJZy6lUpcOKaTJdU4Va1GosktJnk/kn1WT5A1kh8fms+6glSuhbq2+clr4yV/gHRzO6Hvkt/aQSrXjNAETtbGilx6biVACEHj1CyptEldnU2h4NITGQCxxdoyNcvsKRmCULKpt8RAwSXtmLzxZ09imDr5jg0jfv+OSkL3Biba0g/H496pkf4QXAN8AeX2+gLwDeDdDNbpr8aIpy5q0P4egJkzZ0KVcbM9RclIAbTAHbSwq0sUA0nQcSTyqpuublCnYVpSHrm6OcmURUcDUBnoZ8tzY1eftjI5nMap1E2bRbYhxda1W/DKgwlZMdxSKfqvY5g60hisW29YqiZ+6KvSxnGlSi36D6o8gVNn4dRZUYEzG98L0ISIip1FKxJdw6soF08cVI6DujDohgA1cRq2gw+JW6dG+OOHV+jDbJ5O54sPjb3xCOh88SHq2uYnMRU714Jb8pLfMpU21fUQXSdBKDlkdiPPrepm/eoeBjapwoKrgGcbpnHyqw6hIW3y5N+f59gzDiVt6RTdIKkou/jyG+lf/9JOJ4DtD9jXm6jscdKXUm6JHwshfgj8JXq6HphZtekMYON29nEdcB2o5Kxi+6JtKmEOT8aa9bZrtiGjWGGSbp6ODAOKWzdi1zWOeUHH33XMp+4klTHp7y5R7u9LJpByX09SxKz1kFOGZAXH9W3sbBNWpg6vXCSI3Du2Y1Iueth19Ukly9B3E029DAOsdIZ0vU0YyKi5tY5pGzS0ZLAd5f4J/BCvEiC0bceuaYLAV2WLw6jGC6hSAcV8bOmHUQ38dso9m3GDvkHZpueiWykVi8i1UBno3iesvcmMYte2l3m1xNcd6EFoepKJG8NpnJaUuW6aNZ9KyUM3tCQLGlStI1AVStOWTjZlYukaKx57kXdffDrZlCpzXHIDSm5ALm3S0V/hfe9+OR89eSbDEXdum+w4/RsPUC665HvLlPtUCY9Yzrqr8MNtK9AOx2ROet3jpC+EaJNSboqeXgDE8oSbgV8JIb6JCuQuBB4Zzz63V/q4Gmt/pTTfcTlkgMbZh7H8R28bst2ct18HKIsmnctS3+hgWBHhhZLuTQOkMlaSMenUWVRKPqXeIAmmyTBANwycurqk6UjsZomtdVWNUsd3B2V3pXyFxqlZMvX1SVGzrRsHCP2QdH2KVMZU1STtwZ8tvrikVEROQNLRilBZ8LF/Np4EhAaaFBAF6mSodMexSyAwRHK8qcZpCE1n5fUXM/Oi7ybfq1spKvmecckwJ6OWe7JheOwolmfGmnwjlaF+xiL61y9N4lAqb6I+EQiks3ZSydSpUwTX2pDCsQzacinmTMmgCzXxn/O5N2Lqqtw0wL0ru3AsHdcPJ0X54l2F7wVsXaNoxq5rSHpiTARCqYrwjYbJS/m7X7L5a+B0YIoQYj3wGeB0IcSRqPOyGngvgJRyiRDit8DzKCX45eNR7mwP4yEZw8my+PIbgUELJjt1Jsd86k5aZjYntWHieu5eJaBlRg6hqWqJrfUp1mwt0NCSoVxsxC2q1nO65eC7FTTdiRqMkDQaMVNKr+9kbTRN4GQbaZnZjJO1aMil6B+o4FYCXn64Khn7XJ3NQKSxBpDhINH7bjBERWCYGpquIUNF2DIMlXY/In3fC6LXo4khalSiR6WJZWz1e4MBwOpuYetueD9A0l1sIrMcD2ToUS5DtRBA6DoDm1agGRZTFh1HXWsLhZ4+ils3JqU8Mi2zcAe6seqayDakkk5kpq0zvTkNQDZlMqPRYXZTmkbHJBs1lkmbOqGUtGVV7OiQqXW81Jnn46fO2jsnYQJx+Mf+Rn2TQ11rC2G0Yq5uBbqrCMel3pm8OGBq74BSGgx3RRz2UZVZ+Nw3zk1eO+qKOxLJWn3zYI2bYt7FLflouuoJG3eNitU1sR91zWMPJ8XV6qbNIjclTabepntLARlKUhl1oxmmju0o1YUMJbal099XIQhCjlmsVg26Jnjspc4hbQdBTUCVklfl09dxslZSzMz3wsjN4yfqHbfiRwogkpK/cbOSOJErPg7fCwlDiVfxt6vFnv/uX4yp1KhZ+WOj/uTLMTO5IUopI5XFyqg6PfUzFmPaFgOb1zL3mMMo5aMKoN0lNF2jaWoWt+KjaWoVOHtGPe2NivQb0or0FzZlyEUlnZsdAzcICSSs7VPqgpn1KWbW7T+5mnHPacMy8V2PF7/zemBiCq595Ve3XLbw8KNG3e6L//EOnvjHXTtde0cI0QT8BtWoajXwlkjwMny71cAAKrfJH8+x7Re/8qL3/T6p9+4WBuWIwJAG5yP5nqvJPsZouuRTr1KB2VTGpNBfoVLy0Q1BrjmduGQWnHIK5YKHW/JonJrFdgwWtOegPUdv0aW7P8qOjLowxURfJLLWpeCxF1TXJNsxKA5U0A0t8t/r0c2t47vBkF60XkU1K4ldOkITamKKxmXZBuWCi2kb2KnBpuWGqSOlxKuoc2baBr6neuJ6le0vi4Wmb5PZCYrEqssv1zA6+h/8Ho2nfywJkMctMP1yIVHnYFs0z56HF/XUBbVa1A2l4DJtnVTaIlNnkUtbSb/gpqyFqWk0p02ylkbG1HADiWNqDFRCpqTVdwZS8uimIse1pffCGZh4xD2ndwf8UCZd2raHCdDpfxK4S0p5lRDik9HzT2xn2zOklFvHu+P9gvTrmhpUT1c/xDAbkuYVuwOBH1IuevR2Fgj8EMs2cOoswlDSHCVB0ejQ01dGaELpoaNuTA2Osrqs2co639Rbxg1ClpY8hK9IuNBfIZtLkY8ssHLBSwg/7iyl6xqGodG1KZ9Y506dlRC90ETiysk2pPAjkujZkqdSqgxa+LrK1HRSBm4U/AUo5StJLELXR4gGRxgeDwFF+MMb1dQwNqqzlgud6zBSWfyyKo2gGxbNi46jaWo28dkDZOptMhmL/r6KitNEvQAsXSMXVShtr0sxJW2hCciYGoYmcAyNvBvQktbJu2pyEEIwp3733DN7Cwsu/RWN7dOQoaTQvx299E4gHE/tnV13oJyPco2D6lB4L9sn/R3CfkH6lmMoF4WpYTkGvhdSjpJOFl9+44QpDg776K3ouka5UIxq3g8mscQ3HChZ3OKZDclzAMfUyaYMLENLWuO1NaTY1FvmsFmNPLW8i851/TS1RZ2Y5qpM2y29ZSWr1JUryTC0pLvUen9QQVCJSu7Gah7D1JLJIgzUuWhoySCb04m2X4bKTVRk0F0EJA3Q3Yoq8bvg0l+NSPAxml75Cbrv/gpQk2vuCuJzN/2CryW1luLkvkLnWtyWg8nYqSRTtiHqJmZYGr4bYjqqb/DRsxtojIyeY6bX0ZTSkYApwI/80elo4pjijNRJed/H9Au+RuOcQ7FsHc3QEpfq6gnYt5QyWdXvRkyNBS9Syk1CiNbtDQe4XQghgR9EysZRsV+QfiqjlqiJzlwTyFD9yG6pxLyLr1eli313iNLn1KvuI9+rLIBKyRsStBwJajmtiN5MqTR2GQ5aw3HDasfSydrKeq6rInrL0JJtAHJpk0Pb61myoZ9MnYVXSSWrhUq0nW3ppCNfbPzZ1voUx85p5PnnOxP3SxCooG01hBA0Zy2I6qsMlH10TWVhlgsepXyFcsEjlJJMvZ1Y+oapEYZSNUfxVPJW2/lXbVfKGhN+DRODjTf+F+0XfpMNf/gIB3/wFip9ncw87BDqo+BsW1NUqC8invlt9fQWXXrzLjOa0hzSkmVqRHJNKR3LHQDfpZJuRqDyNbRJHWrcNcx9549pWfiyyPhRpD+R8EPGdO9Eb79dCHFR1cvXVZOyEOJOYKQmvztSfOoUKeXGaFK4QwjxopRy1OSg/YL0DVNLerDGbo3YGkrnsvREmbZOwzQWvuc3yDCgsX0atmMkBacMU+fYK+/CdgwV1Iw0WXHwE5QfX4YyCYKWQpdCf5lUxsQwdSoRAd/0b0fzib8tJ5CSohtgGWq5bekarRkrIXQvlJjRZHBQWz2dWUt1UfLD5IZuzlps6i0T+CEzpqTJptREsbmvzMx5jXRvLQ45F0kJ3oqP7Zj0Fr1kX6VYhx89970Q3wsoF4pJPZbknBoa+d4y9U1pOvs6D+hknL2BuMroC986j3kXX4/lmJy4cApdBTeZ/LvyFWY0pZnR6JBN5ViztchZi1uYWW9Tb6vr3wxdCH3CTDODzhtJJQR7Yrlw0sBIxeXLtaT6rJxAyzxgPAXXJMAvh9cYG7KNlGdu7z0hxJZY3i6EaAM6trOPjdH/DiHEjajSNfs/6ed7y0pt4it3hJRyyI/cOGsulm1UqVmCIVmLmhDJxRG7NizbQAhB1+aBIY08Tr3qPizHYHqLKmjlh5IglOTLPkFl0IqPtc7nXPsIMpTc9h8n8Im/LaevYbBmOZC4anqLHi11KQ5qqyNnG/RFE0i+4gO95ByLfMWnr+hy55ItpKMgcEtrhq1bi2TqbRxL57i5Tfz14XXoaLzhpFm859h2/uuWlwDoSldorU/R4Jis6SoQhGpSKrnBED2/V/EJfIk11aDQXx4SDK9hzyJWP827+Hr+0lvm+KOnJ03izzl0KrausTlfwQ1Cvvzq+dt8XuoW0tk2KcnWUP69kTL49lFMv+Br1M9YTPviGYnRB+C76r6cKKWiDMfh3tn1r7oZeBdwVfT/puEbCCEygCalHIgevxr4/Fg73i9IPwwG68bHmaxxdqyqo92MrmuYdlSK2It7xoZJopMWVRZMZUxSjkm55OFWArLDSFrXNcJAsrmryLTmNGlLZyBqdh2vCM79waPc+t7jAPjbZccnn61Oenn3755j2aoe/vHxlwPwnUc20OiYNKctlncVWBNZ8JahMa8ly6a+MjManWQl0Ffy6OhXll5z1qbk+uTSFnc8tZE1T7/ImeefyCmzG7nusQ28tK4XgPZoosqmDBzLwDF1OgfKlNxg0BUEVFIGA0WPYl65gWrYe4j9/Cuvv5g5b7+O5VMzXPAa1a/30JY0lq7hBiGPbhzY8Z3vR4R/xMdvI5VrIdugrvGhpCwn1tLfM8lZVwG/FUJcAqwF3gwghJgO/EhK+RpgKnBjlPhpAL+SUv5trB3vF6Tf311MmnbHzT7ilGvNsPDdCpWSNsR9IaIgbJx4Fb8G4EflCQxTBU+P+8zdADz6uVfy9/86lbO//zAARTcgmzJJW4MBXFC+99f++HH+cskx/Ouvn2F+S5bPnzlvyJh/8ubDhjz/z+PbuWW5asrtWDpvPlI1pegueTy/ZYBjZqvA7kubB2ittwlCyRkHt+JEGZXLtuSpsw2OXjCFRTNP4aR5TTSnTYJQJjr9jv4KXXmXOtvA9QM6+svR+wG2bdARxTfKReXv71rXwbLr3rpLv00NE4fVv3wPx33mbm58WpVt6FjQzMtnNTI//xL6jIP28uj2DuI8G9/1qAx043vT8b0gSVSrljFPFHwp8cLRyzCMpe4ZC1LKLuBVI7y+EXhN9HglcMSO7nu/IP24V2hcMbIauu3g1Dk0tGSYMiVN/0CFvq4igR9ntaofz7SVJDLwJYapLPq0o7ygLVOGapdv+48TePfvnkvqmFSrdkAlxOiaxuU3vUhz1qar4HL5TS8ShJJrLzh4u8dx3oJG/rS0myywuletVL5/y4u89Yx53L+sk6aMzV0PrOHt5y1O3ED1kUqjwTHpKrj85/Ht/OyZDs6ar6rQHTU9xz31yh24ddMAhyyeworOPOvX9yf9Vr1ygGHp9Hb0AvtOfZUDEY9+7pX89GlVvurotnp0DZ5LLSS3Exzz7t89t43xsa8hzoJ3B7px8z0MdGzBqzSTrk+hG4K+rcVk1T9RCCOX7r6K/YL0A7eUdJ0yUlkMJ5u0EWxozZCN/N0A9XV20nHKqwT4rpokgiBECKHKEWsCGUpcP0TXBHbkHzzruw9xx/tVzfB5LVmyKYNS9PmSJnD9wQlnU2+JwoBLfc5m9pQMMxodpkRjGg1vWKRq2t++SmVnvvc1i5mVc5jbmObxdb1ceJZyEZW8gKPa6jmyddvkp/b6FOUgxA+gr+LzufPURPPRXz/Fo49uwDB1ejZsxC32JaUVath3sHiKcmEsaLTRhGAzHnXW6K6aP77YxRsPGlprfzjhT7/ga/tcaQ03Ku8dRl3orLomUmmLVMbEsg0Gukt4nruNMbgrGA/pT+ZCB/sF6Ye+S+C7TJm3mPb5TbQ1pNC1WEYZJLr4+IeKg6AVPyQf+ePLJS+y8nUsQ1nvcZA1/nx1cOjTp8/hl8920KMpdUxQkJRcta+iG7B5bR+BH7JlbS8vBSFO1uaxL2yzWhsTj67uoe0wm7wb8LL2HBU/RBdw10ud2+1Leuaceh7ckOfk9ixLOuH2pao+++zpdRT6y8hQNeCIm2Mf95m7efRzr9zhsdWwd3Byu1Kn9Ear1DpLZ1NeXXvzG7ZNsHpiSxFjlCS7GNWEv6+Vz5BhQBAqMYLlGNQ3OsyfVsfs6XX8835JZQd6FIwFLwiHSK9Hwq66d3Yn9gvSr5s2i9kHt/C2E2dR9AI2dJfoiBtBG4N+fCuqHplzTOyI2AcilUxf0aUr79KQNnEsdVqyttLY90VJS7Zt8O9/WMIPLzwUgLcf3sr/PrQ+mUziz+maQGgw0N1PXVP9TpH9wZE1N+fkOXQUXJ7f1M85B7Wytehy2wsdfO/80X24J7dn6fnfjzH1LZ/Dj/YVB4LXbx7aznA8hP+Jvy3fL6ov7k9oiKx7o3s1uWwLv1xW5IN/WMtfLjmGXy1RJHfLM5uS+M+OYF8h/IYZcwDo37wRw8nS0JqhvtHh4PYczVkLpyXDvAuy3PqgaiG6aZR9jRehpGbp722876KX0Zy2cEwdL1AWei7yx9eljGQCcEydhrTJ9JxS5HihTAi921aKlqxtMK81gx5l2HbnXR58VtVM6to0wPIghIj0AVZ2FjhmdiNb8xVe3NQPwLrOAr4b7pJvPC5+5Uu4b003lqHx9buWsWlDP/d/8hXj2kfjh77OCcDS6Fw835nnX4+fxaaBCr/UxQ4t50+Z3zz2RjXsFfhNcwD41Fdu4BXnHc+mgp8YM3f+8ibSzdO54V8v2Ysj3H3o27gOgHRzGzMXT2HO1DqytsHRsxswNQ3b0Ogve1x0pjJYnvjirn9nMB73zq5/zW7DfkH6R7bVkzI0crZJd8ljStqk6IUcNCXDsq4CTVmLUpQk9fLZTRza4tBd8in4IR15jxMaKvxmtcPmgTL1KZNDWrJsyld4bE0PlqFx5jHtvOuYGfzXzUtoztr87oUu3nywIsFlG/u54GVtPL6mh47+Cjf929Gcc+0jO2Xdj4SOos+SDf1YusrqHS/hV2NxnST8+/+xdv6byNkGh7dmOG1OI//O+MtUvH5h406MvoY9ibi7FcB7j25T/2+5kvqTL2fBpQ52XQPFrk1cfPEr+cwr5+6tYU4Y6k++nPbjXsNdXz6b3z67mVkNDq1Zm76yx5yGNBlLI21q5N2Q3rLHQc0OH5+A7625dyYBTll/O0GXWrjNKuRxzvwXOtMzADi8JYXwSuRFClsXOFteoHLzbfD8SrSOHqYBlZMO421Hvxy5YDpauRuvJceqTJaj2+rImBrpP/wPbIRfOhb3fuR3NB/UxIr/+zP3relO9PhnzK5PxlOtzd9VTM8YvGxGjtue28xLS0ZMyhsbQqCd/nbO1JWM9cxvP8QjN/yCE972DhYcuW13pBr2L1S7avrdkPoxgr77Cvof/B5PnHM2my/8Nh/86JvQjnsXet9G8vf8gi2PvUi6tRGntYH2V0YVN/Oj72+8GJd6Z/Jy/v5B+k996UcYKYOpR8+h0jvAYx+7gKMvPASA+lccib3oKBqcDOFAL+v+eCMP/uRRVhU8miydY06cTs+q+5ixdgvp1kZ6lq5j1uUfZoFpI60Mod5AOFVZTU9cdQNP9JRY/Fwnb9S6mPWyadyyvIfzFjTyib8tZ33PYEmE//uXl03Y8b378Ga+/8clo5Z8Hg1SH5qReecHTqT11r/xwn0Pj6vrWIxTvvx3HrjitJ0aQw2TA/nP/juNF72F4GVnj/h+/cmXM/fU1/P0V8/epuXoZMTRf7sNAGvD08iu1UgrTbGjh1t+/RxL8y5H5FKct6mbNfcunbDvHJdPfxKz/n5B+jfcs5pAwpfefAq//uANbC773HPtYwCc8rslnHTRMwhdw0w7rLr9Re6Lsl3XlTyevm0lAOe/2MWMk9pZde9amg7+I2Z9PX4+j9A1Vv5FJWPd+8RmNpZ9LE0QPP43Xvj273jtxy+GuefzpiOm8427lwGMufTbUUjN2CV1zefuXgUwZEm/M31ta4S/72P6l39MAMjbrkWcfdk27+e/ew7Z999M/ck3M/fU1/Pcpw7nf+5fyy/+9DwAax78c7LtZJoM3PYj6Pj8f6BZBmvvfYmlUZ2p5/rLbLz6PqbaE0d1QSjxa4HcvYuZjkkpkDz/i7+zNO+S90OsSGb5aE+ZVT9+grNPncnTj21ic3nkpiA3relj2pYCm8s+f730lwBceu58Ghe2UImanqyLgr6rix7e1i2kmx16H3uUnFvmhBPfwGHtqnfpp0+fs9uO9av3r93hlnYT6b+1NjzN74vq+2t+/n0XIxH+lmJA26Gn8+Mfn8wll/w/lvz3wYjudVx+4vFko0qvn13yEOVI/jjZZJ2t/+/7vPAv57P6+cF+Ii22weayT2dl4nT64/PpT9jXTTj2C9L/j46nk8c/TR+MLuCMFpVF27qgiV88sI6f3rkq2ebdZ8+je1kPfQMVDj1LEeLApjxNC5q5+odPJNv96NYVcOsKFmW3LVj1P//+C+akTeY+sZmjL0/RcPAm3nHM7g+O7ckepiPd1G77Ebx+j42ghj2JhWd+gPbjXsPfm2+h7zMvY+Cmn5I57Ehy9au45UmVBFXu6+TM917KnT/4ETD5iP/gX9/EijmqY+Dbjp9OutnhhUc2Mnu+MlB+8MiaXf6OQI6jyuYkNvX3C9Kvxv8WXxjyfNm7L+TfX7uQH/5lWfJay2HtvOwDb8ZadBSV5x8BICz0U+rsAZ5gOOKlYjW63YCptkG2LUtQdhF+hdl1k6/zUMvZV9J52xeS5y//6j+SIm+jYdbbriE7dc5uHFkNkw1f+t8r+OiMbrb8Ns2z1/6ZwA04av5CdK/Cxacqg6av66384eKjsc77MNdtqOOD7/t84vuvxt6cCF67+jFeW/V8SN5xetfbQY7Ppz95sd+R/nAs/sAlsPAEvm2m+Fb7yawouATlCt7pFxMKgdem6hUt6SzSkDJ5zf/cxl83jy/M/8JAhaZnOjjivdNwpx++Ow9jp9F52xe47EY1EV57wcF8+PWHjPmZ07/xAGecfyo3fuva3T28GiYRlm3Jc0P9dN6waC6ljh7shjpKK5ax6fZ7ecs5Kqb0hk9chJQqzvTKeU2c/M538fiNfyY7dQ5dy7c1mPZH7OuSzf1DuzUKruNoVoX1rKpYvO8Hb+fSc+ez9r7V+D/7HLpf5qp7V3HVvat483//ge/cv4qev9zKJz9+Gjlz9FPztuOnc+FBzUxrSaO9/kN75mB2EtdecDDXXnAwv3y2Y5v6K6BWAwD3r89z//o8l756IUU3oGneDhfwq2EfxeU3vchFR7fjmDr/OOydtJ12HJplMLB2C+WuPvqeeoq+p57CeeFuQinJ52ZT8SVTGx3mnHhG0rgkxkjW//4CJdkMR/2bxJy//1v6bzmklYZwAOGWCF/3ft50z2I2brqNC5w3wh+W8utXaNzQN43OFx/ix196iDf/7ivY//19Pjbt01z5kRsBOK4xxfR6m5vWqCJopzQ7HPOh16C/4aN789B2GG8/vJX6ky9n3ivO56mrXp28Hrt/FvzoY/Qu38zMa37HU+v6+N0v3wOo4G3hwb9hvnn0vsxL3vJ6Dv3tzbvvAGrYLQhv/l/+9POQb77uIyx5zdnMfuXByI9/i0+XX+CbrzuIHJBd8zDCSvFc+mA+8INHKPRX0HWNrk0DbF321Ij7rT/5coSmc/olF3PTvx29R49pd6JWZXOSo97S8P/yc7z+ftKvu5SNjytd743fupa6tvm0/BZOeP0ZnPzOd3HEnCZ6Sh5/X9PLoRd9ls8HIT1L17Hy9hUAvOXwVh5f2cvSvLvPEX41Vt53E/Un37SN3/XH37ofgPcaGv9xypzk9Y2/+DH1c9rG3G//elWGQiv1oBe6APAbZrLVN2lO7feLyn0S/W4I53yAr83v4vXXPswdV30QFp/EL5d08IuvfIc//Gg6W6//F2R9C6WmeXzuhmfI95bJNafZsraPvo2rKHSu22a/9TMWcfcP3sfn/vYif/7OD6j/4Y/V902ioO/Owg3CpOXp9jCZJ4UD4k7UXvufCE0jfP4BXrrjW0w7Qi1HU7kWMq2zeO6hFXzh/MN4Zk0P7fUp3myvZNFLf6HSm6d7eRf/v707D46rvhI9/j33tlrdrc2yZMu2vBvb2CxeABMgmTgJCYSBR0JBHklmhsyDCnmPDI96vJqQ8CpJVSpTTGVIyOTlMcMECGFICBMgMCQFAYPZTGxsA8YLi/dNthZrbam3e8/747aMMNZiW1Jv51OlUvfV7avfT1d9+tfn/vr83mrp5a2WXnpaeom6wpKayPC/NE8N9aS7vX0zt7dvpj7qMrfmg4vS31v0Pwhf++1hj33BmtUA+NFakuueIbnuGdyd6/DvvJmyw+8eXfDC5IeHpy+nJ+3Tk/a5rq6Vve+2ctavXZq0mgdf2Q1Ab9tBbngpyb0HKnno7WYOt/Sy6cnf8vL99/PeqseOG/ABZi1dyjutcZbMmPDBtguvoObjN/PV32ziq7/ZRN1nvzMOvRx9vurR+juDfeUzyeepRSNxzvLl+uqrrw67X9mutXTMWEEiozT07Uc6mnil/Ey++t1g6clPfX4J295v47WbFtJ6748AOLT2fQ69eZiu3mB+fp+nNFSF+dS2P49dh4pM6x03s/PpLYQiId76x18xv66Cj08P8r+y9jH0/Kty3MLStvPGLwEw7+5fM/0r/0Ln3m2cdfmXePupRz603xmXXQNAR0ucA6//cdjjVk2dRyYRx8+kcMMR3HCw7oO4LgsvCsqUeBmfd1av5v67buLz8yaMYq8GF43FNqjquSf7eBG5+6LbfvGN2jlDT4hY97Nbad782lRVPXSyv2usFH16p583+TR+t7WF1p4k1587nUnpBItrY9z73SsAaE+kueGC2TzVnObyG75F31O/wAnvZMrSBuZODoJU9/5OuvZ3s/rMC1m5eU0uuzOq3M6DTLvxMb79v4MAPFid/pOR7OimenoV657fw/uHe/hvZ9Yenc5mAT/35v5rENx/sHo3c89Zyht7t30k4EdqJlFRHby7bTvQ+pFjXPg31+FlfGY0BM+T3/3kbrqbgpRoWUUNNQ1z6G7aQaxuGtVTpnN4bwcA6USwPOfl8bV4HL8sRD7qH+kPJZ+H0iUT9GXHeq5e/Dme3dlOczxDpmoe7zXHmZ79Zz5jUoz6qEu4aQuZ7XsIN85i8rI2KqbUEVkQzPTte2cTu5/ZQPvOjhz2ZPR5NdPGbAWtxjvuB6D6O9fzN5+bl9dPhlL2f3Q1D7wfpe605VRMmkZVbZTpsyZw+ZJpxMpc7n0xCOKH3nrhQ49b/fiPmFsboSPhEazPDY/+1D26UtX0ZZ8kUhFm4fkLAPj0GQ3817OD60PrD3axdMrlxJ+4g8ggtYDyUTozgimbeZziKZmg7519CdVdh/jc3AYqJM2BhNKZyDAzm58/HM/gOkID4NZOJrP3PWKTa4mcvgS3JpjmWHnBxSw+ewVbf3R3DntSmKb9w725boIZyqe+xvPnZpgZSbM7EeKNpm6WTqkinvLZ2tLDfzk3qFqbTv4VGx59hKpp86hpnMdbh7pZXB9lUizE7o7gQ4wNZ/0Fk2ZMon5qFWc01uD5yt+umEEk5DCrJkx4Z5AenbT+OfxUhsjXvpezbp8UVTSPg/pwSiboA/ixWmKuEmrbS3nlXM6ZVkVNebCyVmNVGaHOJpKbXkaTCZJHOglVRBDHpfmJ/wDAcR1qL/oEsy5elstuFKRtX76SRb95ItfNMEP53t9y8Af3MyfcR+P8iYReepDw3DNomL2Et5uDBch/cPVZVH1lGbf9fjNHDvfw29f2cMlpdVSWOdzy8BsA1DXWI46wfFYtjROjlDkO1eUuIUdw3/gDXW++DkBfWycTb/1xzrp7snx/+JF8Pl8qLZmg72z8T3TJJYTa9yKpPianmvEr63Hih4MdVJFMArduKup5lIea6D3QRO+Lqzi4JijLmmhPcN4nVlKxZAVDlW8qtpz/cMpatwMgyTiHHn7guE9kLzV6Ba/M2Jjx4wcJbX2eA7M/yfS27fjLPgvdh5mybw2TZwQpzmSkGleEr318Dmt3HeH8OROJhhzSPtzw6WB1qp2tcaJhl4WTKplTG8V1BFeEMkfwuzs48s5u4IPUX6HxfR/fG6aSbh5H/ZIJ+qGpc9HWXZDoxutsI95wJmHHwauaQnnzu8FJUh8/3oWEI5BJk2jrItHWSc2sWpyyEMmOHg48+nvath7kzEc/yEHqqvuQ7ELsLWvW07hi+DnthSqd/V+OxFvQUBi8DGTSEG8nsWUdqe7eozNC+i8SAsy5bDk7b/zSh7aZ/JNZ/GkagOjFPyHxH1+n7/XngufD9k2UzVxA51P/SaSummsv+CRfWVhB+uDrSEcZrLiSaxdWczDh8OXeV+Hsi8FLEerYTmbCNCTVh9vZTiZawYyrv8D+xwr3Q3zq6/Aj/XFqy8komaCf3PQyzoTJONEK0ru3UTF7CX5lffBDVbSzGZ12OuHTzkYTcXq2vk1fczteOkMoEsZPZ6ia2UD9bf/MsSE9vnMnPQda6dwVrGy18IHHxrdz4yS8byNuTTCzR7wUTk8rJOOQSdG9ZhUdOw7Qs7+Vrv3dtL53hO1zz+NIymPxeVOpnl6NuMKmL/4lZz/+hxz3xAyna83PSQFrr7qZC//pRsKzTwdg15+2Un96HRWzZ+FOakRTCfp2vE/N7MW8E1sAKDL/PLyyKKHediD43Iab6qP7hd8jjsOWB18EYPTmiI2v7PhwmJ3GpSknpWSC/pG33qF6TideIkXrpu1MONzKhGu+AV4KDZWhUxegZRE0E8zJL6uIIq5DbEItXjqowV9/2z8f99heIoV6Pn6RpzBS2zcRaoyjiV4U8FMJNNlHYs8Odv1xPb6nqOeze2vr0frlKV/Z8OeDLDqtjwmzqnGy6xyYwnCoqQft7SK1fRMAU89pRD0fJ1aFM3Mx7rTTcGu20TV5MX3twYXceO1URIU9bgOzd79G8oXfE29qIxQJ0/zGdjJ9x1/TolCoDl86OY9jfukE/bq/v4vWO26mfEIlTlmI3qYj1OzfhjQuBEDDMfxwBU5VPd77G0l1x3Ej5cSmTiTZPnTVTS+V4ci7h+huGqVFOPPEkTv/F6nuXspiEeouWEF4wTJwQqRbDgDgtbfgpxJs/L/PkmhP4IRd/JTH3t40qezbX5+g/niiPUGXK4QiIdat/Ax7drRzzb7SqMpYyP7yjqsITZ2DU1EFQOOlPhrvwjlrJX55BZLoRk6/kLDrMK82WHcilupAy2LM2/cqRzZuwAmHSHUHq9XN/cIncS7/u5z1ZzT4no833Op4p5jTF5FrgO8Di4AVqrp+kP0uBX4KuMAvVPWO4Y5dMkEfoOdAC5lECnFdeg60En/jz5Q37QYgfNrZuFV10N1GpmkX4jhUzZyMOA5e4qP19AdSzydaGymqYmP+k3cRm1xL+YRKkh09+N3tZFoOIKEBawY4Dn4qQ6w+xp69XXiqHEp4tKc9asuCWVE1IQdXoKUzQbQnRVVNOeXV5dSGS+pfr2Bl+pLgOGgy+CBV6nATibZO6tv3I+EoqI+6YcKZJGEveJ54E4LpnYl3NtDb0sHUz67kvUfvJ1YfLcjZOsdSf/gpm6NwHXczcBXwr4PtICIu8HPgs8B+4HUReVJVtw514DF95onIDOBXwBSCQd89qvpTEZkI/BaYDewGvqSq7dnHfBu4HvCAm1X1mdFqz75X95Hs3EHa96msjeBGyiivDUatk5MJ3NpJEAry9xCkeLY+9DJuOAhgkwc57p7ntxGuyL8FVE7W9huupmLqRCob6+neexgnXEb3jj1UZdJIeeRoAEj3xOltbidWH2X6lErW7uog7vmkfCU94L/eU2hJeoQdn4gbXPAORUM8PH051+630X4+23TvS5w/teHofT+Vwfd8klvWQiaNWzcFiVYgoTBkJzOUJeMgDmUfu5Rps3fjL7+C5U9fm6sujDpfdczr5avqNgCRIdOhK4Dtqrozu+/DwJVA7oI+kAFuVdWNIlIFbBCRZ4GvAatU9Q4RuQ24DfiWiCwGrgXOILjO85yILFDVUUmWf2LjK9xZdzaN0RD1EyKUVUSomDIRCPLTTiaNOC6ZeAIvkWLHUxtY9oenhz3u8qdH7XUpL5z2i9+x+swLmTi/llhdlPLqKI7jIM4hInU1qB+8tU3H+8jEE2T6MkRrIyxsDXOgL0ND+QfHirrCkZSHK0LYEdK+j/RlqGioYFLK46ns0naX7z7uu1eTY1t2dnBeopdMPDvS747jloXw4j14iRShTJpQ3RQkVIafCFI4mknjzFyMk+jGX35FLps/JtRT/GHSO+NU06wRGFjxbj9w/nAPGtOgr6pNQFP2dreIbCNo6JXAyuxuDwCrgW9ltz+sqklgl4hsJ3g1e2202jSnooy62gix+hjJjp6jqZtEWxcNlyzAa28mHe8jHU8w69NnjNavLTh98RSJ9gRlkRDl1cFFbQgCfT/1/OBvlQhGf9GwSyP9a4gG+0ysLmcmcKgjQdSVINef9oimPBzXLurms1tii/jv1yziyOYP1pfubWknHU9RNXMSjuPgpTNE6g7juA5uJMjpV0Vi6MH3STbtRvJ0RblT4evwUzazV3L/SkQGvsW5R1Xv6b8jIs8RZEGOdbuqjuSTjMd7Ag37ajNuiVURmQ0sA9YCDdkXBFS1SUT6MyeNwMASlvuz20bNVXs3sPrMC0l2JQlFQ7S+E9R9nzC7l5rtW4kfaiPZ0UMm3oeXylAzmr+8gNRMrsBLeaQTmex1kOBJ7bguiY5uANJdvYgbpL6SXSkcV4i4Dr4q0QnBcD8yIShzMT0SOvoOAcD3FC/lU1UT7Hdn3dnc2rZpPLtoRqB9ZwdlkRBuJEhf9rX2kuhK0n2wh1h9lFAkRCbex4QFMwhFgnPptbeQ2LMDP5UhmsvGjxXVEczeUYB/V9V/GvwwevEptmQ/MGPA/enAweEeNC5BX0QqgUeBW1S1a4g81YheuUTk68DXAWbMmPGRBwxn5eY1PNS4jMb9wb9kxeQY4gjNG96hp6mTd1/ex5V7NpzwcYvJhWtf5GeTlrDjzcNEXeG6K5NUTe/GT2Wvd1RXoJ7P1B/cw1Rg3crP4LhCOhGkelI9wdTXeHMvXspDPWXK0smUVYZJdiVp3tSCG3bwUx6+pxbw89B5tRH8lEfru8HAKFYXJVYfw/eUA+ubOLQpw5wpFdTOmUCoIkrH9uDT7aFoiPn3PZrLpo8pz1O8TF6UYXgdmC8ic4ADBKnxrwz3oDEP+iJSRhDwH1LV/k8tHRaRqdlR/lSgObt9RK9c2bdI90BQT/9k2nUk5dPX2suc6nK69ncTiobobetDPS35gN/vrIYKdu9KsaCynL1rDlA3r5dznv3TcfddsXoVECyZ6KW9o/dfWPQxANK+T29bHxWug1vmEqmN4LjChWtfHJ/OmBMWdgRxBd9TyiIhkl0pWra2Eq2PEY6VUZnxSfWk6W3ro6orTixbgnzWTx/KccvHlvoMX3DtFIO+iHwR+BkwCfiDiLypqpeIyDSCqZmXqWpGRL4JPEMwZfM+Vd0y3LHHevaOAPcC21R14FytJ4HrgDuy358YsP3XIvJjggu584F1Y9G2v2t5aywOW1QOdSS4M77thB5z7LTV6unVtO1oxxUh1ZOmvDqDuEJ5dZieIvtcQ7E5kvKpPdyLG3ZIZmeweSmfRHsCcYXaijK8lM+K1avYeOklRTehYVDjUGVTVR8HHj/O9oPAZQPu/xEYflWbAcZ6pH8R8NfA2yLyZnbbdwiC/SMicj2wF7gGQFW3iMgjBFOOMsBNozVzx5y40ZhOec6zf+Kp2edSWRmmvDqMl/Jwwy6x+hjnPf/cKLTSjIW/r1zMvIowad/HTyqHOpMA9GR8vK4kM2MhWpLBrCwovhlsQxnJlM18XpFwrGfvvMLx8/QAnxnkMT8EfjhmjTLjrs/zifRl6NrfjZfxmbasgd7W3lH9HbfEFnFX74m9KzGDS/nKvr7gk9WeKpWhYPaWK8LBRJqDiTSeQkN56X3Izvf8Yads5nMdhtI7Y2bcWbmFwtST8XElQ9gRdmfXie5Xyi+wOqJ6+vkb9S3oG2M+5JbYoqO3O9PDlZMsPTqCKZv5zMl1A0xpWX3mhRz6/jdG7Xj9AaqUR56jbai/5V2920r+b91fcG2or3x+UbCRvhlXo7mi2A9rz6SmzMYtY2FBZZj3eoYuNFiqVP2jC78PvtP4tOVkWNA3Bev29s25bkJRGpjeAXsXdSz1hw/6msdR34ZJxpghHfsiUOrU94b9sjVyjTEF4XgB3kb6H6aZNH56mDU2hl1PMXdspG+MOerYAG8B/6P6c/qFOtK3oG+MGZSldj6qP6c/ZNC3nL4xplDc1buNj02M2ih/EOql8TOpIb/GujbPqbCcvjHmI/rrLlng/yhfffzhpmzm8Ujfgr4xxpyAD1I4Q+yTxzl9C/rGGHMCNJMZdvYOeTx7x4K+McacABvpG2NMCRlRGQbL6RtjTHEYyUg/n+fpW9A3xpgToJ6Hn0kPvY8FfWOMKQ6qNtI3xpiS4fs+UsBVNi3oG2PMCRhJwTV8m7JpjDFFYST19POZBX1jjDkBI8np53NpZQv6xhgzchv8jr1ItG7QHTSTRFO9AG3j1qoTYFU2jTFm5H7ld+5BM8lBd/BbtuJOOh1VHXpeZ45Y0DfGmBFS1ZQ7aRF+y9bj/zyTxO/ci7dvTfk4N23ELOgbY8wJ8PatKR9stD9glD/M9J7csaBvjDEnYLDRfiGM8sGCvjHGnLDjjfYLYZQPFvSNMeaEHTvaL5RRPljQN8aYkzJwtF8oo3ywefrGGHNSVDUVmnkR/qE38HsOQ+JI3o/ywUb6xhhz0oLR/r6CGeUDSD7XfR4JEWkB4kBrrtsyhuop3v4Vc9/A+pdvZqnqpNE8oIhUAn2qWhAFeQo+6AOIyHpVPTfX7Rgrxdy/Yu4bWP9M/rH0jjHGlBAL+sYYU0KKJejfk+sGjLFi7l8x9w2sfybPFEVO3xhjzMgUy0jfGGPMCBR00BeRS0XkXRHZLiK35bo9o0FEdovI2yLypoisz26bKCLPisj72e+1uW7nSInIfSLSLCKbB2wbtD8i8u3s+XxXRC7JTatHbpD+fV9EDmTP4ZsictmAnxVM/0Rkhoi8ICLbRGSLiPzP7PaiOX+lqGCDvoi4wM+BzwOLgS+LyOLctmrUfEpVlw6YCncbsEpV5wOrsvcLxS+BS4/Zdtz+ZM/ftcAZ2cf8v+x5zme/5KP9A/hJ9hwuVdU/QkH2LwPcqqqLgI8BN2X7UEznr+QUbNAHVgDbVXVn9pNwDwNX5rhNY+VK4IHs7QeAL+SuKSdGVV8CjhyzebD+XAk8rKpJVd0FbCc4z3lrkP4NpqD6p6pNqroxe7sb2AY0UkTnrxQVctBvBPYNuL8/u63QKfAnEdkgIl/PbmtQ1SYInojA5Jy1bnQM1p9iOqffFJFN2fRPf/qjYPsnIrOBZcBaSuP8Fa1CDvpynG3FMBXpIlVdTpC2uklE/iLXDRpHxXJO7wbmAUuBJuDO7PaC7F+2zMCjwC2q2jXUrsfZlvf9KzWFHPT3AzMG3J8OHMxRW0aNqh7Mfm8GHid4e3xYRKYCZL83566Fo2Kw/hTFOVXVw6rqqaoP/BsfpDgKrn8iUkYQ8B9S1ceym4v6/BW7Qg76rwPzRWSOiIQJLiA9meM2nRIRqRCRqv7bwOeAzQT9ui6723XAE7lp4agZrD9PAteKSLmIzAHmA+ty0L5T0h8Qs75IcA6hwPonIgLcC2xT1R8P+FFRn79iV7D19FU1IyLfBJ4BXOA+Vd2S42adqgbg8eC5Rgj4tao+LSKvA4+IyPXAXuCaHLbxhIjIb4CVQL2I7Ae+B9zBcfqjqltE5BFgK8HMkZvyvXLhIP1bKSJLCVIbu4EboSD7dxHw18DbIvJmdtt3KKLzV4rsE7nGGFNCCjm9Y4wx5gRZ0DfGmBJiQd8YY0qIBX1jjCkhFvSNMaaEWNA3xpgSUrDz9E1pEpHvAz1ANfCSqj53isd7mqCC5Cuqevmpt9CY/GZB3xQkVf3uKB3qR0CM7AeojCl2lt4xeU9Ebs8uyvEcsDC77ZcicnX29m4R+QcReU1E1ovIchF5RkR2iMg3hjq2qq4Cuse+F8bkBxvpm7wmIucQ1FVaRvD/uhHYcJxd96nqBSLyE4KFTS4CIsAW4F/Gp7XG5D8L+ibffQJ4XFV7AURksKJ6/dvfBiqzi350i0hCRCaoasfYN9WY/GfpHVMIRlIgKpn97g+43X/fBjfGZFnQN/nuJeCLIhLNlp2+ItcNMqaQ2QjI5DVV3SgivwXeBPYAL4/m8UXkZeB0oDJbGvl6VX1mNH+HMfnESisbY0wJsfSOMcaUEEvvmKInImcBDx6zOamq5+eiPcbkkqV3jDGmhFh6xxhjSogFfWOMKSEW9I0xpoRY0DfGmBJiQd8YY0rI/wcBN+uolQel6AAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# short look into training data: large biases\n",
    "# any problem from normalizing?\n",
    "i=4\n",
    "xr.DataArray(np.vstack([X[i],y[i]])).plot(yincrease=False, robust=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## `fit`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "WARNING:tensorflow:AutoGraph could not transform <bound method PeriodicPadding2D.call of <WeatherBench.src.train_nn.PeriodicPadding2D object at 0x7f3a7c21bfd0>> and will run it as-is.\n",
      "Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.\n",
      "Cause: module 'gast' has no attribute 'Index'\n",
      "To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert\n",
      "WARNING: AutoGraph could not transform <bound method PeriodicPadding2D.call of <WeatherBench.src.train_nn.PeriodicPadding2D object at 0x7f3a7c21bfd0>> and will run it as-is.\n",
      "Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.\n",
      "Cause: module 'gast' has no attribute 'Index'\n",
      "To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert\n"
     ]
    }
   ],
   "source": [
    "cnn = keras.models.Sequential([\n",
    "    PeriodicConv2D(filters=32, kernel_size=5, conv_kwargs={'activation':'relu'}, input_shape=(32, 64, 1)),\n",
    "    PeriodicConv2D(filters=1, kernel_size=5)\n",
    "])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model: \"sequential\"\n",
      "_________________________________________________________________\n",
      "Layer (type)                 Output Shape              Param #   \n",
      "=================================================================\n",
      "periodic_conv2d (PeriodicCon (None, 32, 64, 32)        832       \n",
      "_________________________________________________________________\n",
      "periodic_conv2d_1 (PeriodicC (None, 32, 64, 1)         801       \n",
      "=================================================================\n",
      "Total params: 1,633\n",
      "Trainable params: 1,633\n",
      "Non-trainable params: 0\n",
      "_________________________________________________________________\n"
     ]
    }
   ],
   "source": [
    "cnn.summary()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [],
   "source": [
    "cnn.compile(keras.optimizers.Adam(1e-4), 'mse')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [],
   "source": [
    "import warnings\n",
    "warnings.simplefilter(\"ignore\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/3\n",
      "30/30 [==============================] - 24s 744ms/step - loss: 0.2325 - val_loss: 0.1270\n",
      "Epoch 2/3\n",
      "30/30 [==============================] - 22s 717ms/step - loss: 0.1188 - val_loss: 0.0791\n",
      "Epoch 3/3\n",
      "30/30 [==============================] - 22s 733ms/step - loss: 0.0766 - val_loss: 0.0620\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<tensorflow.python.keras.callbacks.History at 0x7f3a880d2700>"
      ]
     },
     "execution_count": 26,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "cnn.fit(dg_train, epochs=3, validation_data=dg_valid)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## `predict`\n",
    "\n",
    "Create predictions and print `mean(variable, lead_time, longitude, weighted latitude)` RPSS for all years as calculated by `skill_by_year`. For now RPS, todo: change to RPSS."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [],
   "source": [
    "from scripts import add_valid_time_from_forecast_reference_time_and_lead_time\n",
    "\n",
    "def _create_predictions(model, dg, lead):\n",
    "    \"\"\"Create non-iterative predictions\"\"\"\n",
    "    preds = model.predict(dg).squeeze()\n",
    "    # Unnormalize\n",
    "    preds = preds * dg.fct_std.values + dg.fct_mean.values\n",
    "    if dg.verif_dataset:\n",
    "        da = xr.DataArray(\n",
    "                    preds,\n",
    "                    dims=['forecast_time', 'latitude', 'longitude','variable'],\n",
    "                    coords={'forecast_time': dg.fct_data.forecast_time, 'latitude': dg.fct_data.latitude,\n",
    "                            'longitude': dg.fct_data.longitude},\n",
    "                ).to_dataset() # doesnt work yet\n",
    "    else:\n",
    "        da = xr.DataArray(\n",
    "                    preds,\n",
    "                    dims=['forecast_time', 'latitude', 'longitude'],\n",
    "                    coords={'forecast_time': dg.fct_data.forecast_time, 'latitude': dg.fct_data.latitude,\n",
    "                            'longitude': dg.fct_data.longitude},\n",
    "                )\n",
    "    da = da.assign_coords(lead_time=lead)\n",
    "    # da = add_valid_time_from_forecast_reference_time_and_lead_time(da)\n",
    "    return da"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [],
   "source": [
    "# optionally masking the ocean when making probabilistic\n",
    "mask = obs_2020.std(['lead_time','forecast_time']).notnull()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [],
   "source": [
    "from scripts import make_probabilistic"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[33m\u001b[1mWarning: \u001b[0mRun CLI commands only from project's root directory.\n",
      "\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "!renku storage pull ../data/hindcast-like-observations_2000-2019_biweekly_tercile-edges.nc"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [],
   "source": [
    "cache_path='../data'\n",
    "tercile_file = f'{cache_path}/hindcast-like-observations_2000-2019_biweekly_tercile-edges.nc'\n",
    "tercile_edges = xr.open_dataset(tercile_file)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [],
   "source": [
    "# this is not useful but results have expected dimensions\n",
    "# actually train for each lead_time\n",
    "\n",
    "def create_predictions(cnn, fct, obs, time):\n",
    "    preds_test=[]\n",
    "    for lead in fct.lead_time:\n",
    "        dg = DataGenerator(fct.mean('realization').sel(forecast_time=time)[v],\n",
    "                           obs.sel(forecast_time=time)[v],\n",
    "                           lead_time=lead, batch_size=bs, mean=dg_train.fct_mean, std=dg_train.fct_std, shuffle=False)\n",
    "        preds_test.append(_create_predictions(cnn, dg, lead))\n",
    "    preds_test = xr.concat(preds_test, 'lead_time')\n",
    "    preds_test['lead_time'] = fct.lead_time\n",
    "    # add valid_time coord\n",
    "    preds_test = add_valid_time_from_forecast_reference_time_and_lead_time(preds_test)\n",
    "    preds_test = preds_test.to_dataset(name=v)\n",
    "    # add fake var\n",
    "    preds_test['tp'] = preds_test['t2m']\n",
    "    # make probabilistic\n",
    "    preds_test = make_probabilistic(preds_test.expand_dims('realization'), tercile_edges, mask=mask)\n",
    "    return preds_test"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### `predict` training period in-sample"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[33m\u001b[1mWarning: \u001b[0mRun CLI commands only from project's root directory.\n",
      "\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "!renku storage pull ../data/forecast-like-observations_2020_biweekly_terciled.nc"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[33m\u001b[1mWarning: \u001b[0mRun CLI commands only from project's root directory.\n",
      "\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "!renku storage pull ../data/hindcast-like-observations_2000-2019_biweekly_terciled.zarr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [],
   "source": [
    "from scripts import skill_by_year"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "           RPS\n",
      "year          \n",
      "2000  0.864946\n",
      "2001  0.944157\n",
      "2002  0.975950\n",
      "           RPS\n",
      "year          \n",
      "2003  0.940808\n",
      "2004  0.946251\n",
      "2005  1.008755\n",
      "           RPS\n",
      "year          \n",
      "2006  0.962032\n",
      "2007  1.009629\n",
      "2008  0.975747\n",
      "           RPS\n",
      "year          \n",
      "2009  1.009750\n",
      "2010  1.005306\n",
      "2011  0.955670\n",
      "           RPS\n",
      "year          \n",
      "2012  0.991964\n",
      "2013  1.010457\n",
      "2014  1.014053\n",
      "           RPS\n",
      "year          \n",
      "2015  1.020807\n",
      "2016  1.084565\n",
      "2017  1.054406\n"
     ]
    }
   ],
   "source": [
    "step = 3\n",
    "for year in np.arange(int(time_train_start), int(time_train_end) -1, step): # loop over years to consume less memory on renku\n",
    "    preds_is = create_predictions(cnn, hind_2000_2019, obs_2000_2019, time=slice(str(year), str(year+step-1))).compute()\n",
    "    print(skill_by_year(preds_is))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [],
   "source": [
    "# not on renkulab, simply do\n",
    "# preds_is = create_predictions(cnn, hind_2000_2019, obs_2000_2019, time=slice(time_train_start, time_train_end))\n",
    "# skill_by_year(preds_is)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### `predict` validation period out-of-sample"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",